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Abstract

Let F' be a field of characteristic 2. Let (2% be the F-space of absolute dif-
ferential forms over F'. There is a homomorphism g : Q% — QF./ dQ’}_l
given by
p(mﬂ/\.../\dﬂ):(x2_x)@/\...Adﬂ mod Q!
T T x1 In

Let H""'(F) = Coker(p). We study the behavior of H"*1(F) under
the function field F(¢)/F, where ¢ =< by,... ,b, > is a n-fold Pfister
form and F(¢) is the function field of the quadric ¢ = 0 over F. We
show that

ker(H" 1 (F) — H" T\ (F(¢)) = F - dor o p B
bl bn
Using Kato’s isomorphism of H""!(F) with the quotient I"W,(F)/
I"MW,(F), where W, (F) is the Witt group of quadratic forms over
F and I C W(F') the maximal ideal of even dimensional bilinear forms
over F, we deduce from the above result the analogue in characteristic
2 of Knebusch’s degree conjecture, i.e. I"W,(F') is the set of all classes
g with deg(q) > n.
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Introduction

Since Knebusch’s seminal papers on generic splitting of quadratic forms ap-
peared (see [ Kn 1], [ Kn 2]), few work until recently has been done on his
degree conjecture, which asserts that the n-th power I™ of the ideal I of even
dimensional forms in the Witt-ring W (F’) of symmetric non singular bilinear
forms of a field ' with 2 # 0, coincides with the ideal of forms of degree > n.
Compare [ Kn 1], [ Ar-Kn], the 1998-preprint [ OVV] and | A-Ba 2|. A simi-
lar theory of generic splitting of quadratic forms over a field of characteristic
2 can be developed (see section 6 of this work) and the corresponding degree
conjecture can be stated. The aim of this work is to prove this analogue of
Knebusch’s conjecture for fields with 2=0.

The advantage of working with fields of characteristic 2 is the fact dis-
covered by K. Kato (see [ Ka 1]), that there is a strong relationship between
quadratic forms and differential forms defined over such fields (see section 5
of this work). Thus many problems concerning quadratic forms in charac-
teristic 2 can be translated into the language of differential forms, which are
sometimes easier to handle, in particular choosing a suitable 2-basis of the
ground field. Let us briefly recall Kato’s above mentioned correspondence.
Let F' be a field of characteristic 2 and let 2% be the space of n-differential
forms over F' (see [ Cal, [ Groth]). Let d : Q%' — Q% be the usual differ-
ential operator which extends d : F' — QJ., a — da. Then there is a well
defined homomorphism g : Q% — Q% /dQ%* given by

dx, dz, 9 "
p(wzl /\---/\xn)—(x x)xl/\---/\xn mod dQ7%
(see [ Ka 1], [ Mi] or section 1 of this paper).

Choosing a 2-basis of F' one can easily lift p to a homomorphism g :
Q% — QF which of course depends on the 2-basis ( see section 1). Let
vr(n) = ker(p) and H"(F) = Coker(p), so that there is a exact sequence

0 — vp(n) — Qp — Qr/dVE — H"(F) — 0.
In [ Ka 1] it is shown that there exists a natural isomorphism of groups
H"H(F) S "W, (F) /T TTW,(F)
given by

ba da
b— A A —L s L ay, ... an b))
aq Ay,




Here W, (F) denotes the W (F)-module of non singular quadratic forms over
F and < ayq, ... ,ay,;b]] denotes the quadratic n-fold Pfister form defined by
ai,...,a, € F* b€ F (see [ Ka 1], [ A-Ba 1] or section 5 of this work).

The generic splitting theory developed in section 6 enables us to define
the degree deg(q) of a non singular quadratic form over a field F' with 2=0
along the same lines as Knebusch does for fields with 2 # 0. We show also
that I"W,(F) C {g € W,(F)|deg(q) > n}. In [ A-Ba 2] we have shown
that equality holds (i.e. the degree conjecture holds) if one has the following
equality:

ker [I"W,(F) — TW,(F(9))| = & W,(F)

for any anisotropic n-fold bilinear Pfister form ¢ over F. Here I"W,(F)
means ["W,(F)/I""'W,(F) and F(¢) is the function field of ¢ over F.
This last equality is according to Kato’s isomorphism equivalent with

(*) ker [H"(F) — H""'(F(¢)] :F-%/\---/\aé)ﬂ

1 n
in H"*(F), where ¢ =< by,... ,b, >>. The proof of (*) will be finished in
section 4 of this work. The corresponding result for fields with 2 # 0 has
been announced in [ OVV].

In section 1 we review some well known definitions and results concern-
ing differential forms over a field with 2 = 0. We introduce the Cartier
operator C' and the p-homomorphism and we prove some technical results
about divisibility of forms by forms in the F-algebra Qp = @, Q% (see
(1.16)). In section 2 we start to study the behavior of Q™ and H™*! under
field extensions. The computation of ker(Q2% — Q%) for some field extension
E/F is not so difficult if one can choose a suitable 2-basis of E. We prove
for example ker(Q2p — Q) = Q™" Adby A--- Adb, if m > n (and =
0 otherwise). This is the first evidence for the equality (*). The compu-
tation of ker(H""(F) — H""(E)) is much harder, even for very simple
extensions E/F. We use frequently Kato’s fundamental lemma (see | Ka 2]
), which is stated here without proof as lemma (2.15). As an important con-
sequence of these computations we obtain that a form w € Q' belongs to
ker(H" ™ (F) — H""(F(¢))) if and only if w satisfies a certain “differential
equation” in the space Q} where L/F is a purely transcendental extension.



In fact, let S, be the set of all maps p: {1,... ,n} — {0,1} with p(i) =1
for at least one i. Let L = F(X,,u € S,) where X, are independent vari-
ables. Let M = F(X},u € S,) C L and set Qp[M] for the sub-space of
Qp (over M) generated by the forms db,b € F, over M. For example if
T =35 VX2 with b* = [[7_, 0¥, then T € M and dT € Qp[M]. Then
we show that w € Q% is contained in ker(H" "' (F) — H""(F(¢))) if and
only if w satisfies an equation in €2, of the form

w=p(u)+dv+ AANdT

with u, v, A € Qp[M] (see (2.25)). Section 3 is of technical nature and
prepares the way for the proof of our main result in section 4. Section 4 is
the heart of this work. We start with a relation w = p(u)+dv+ AAdT where
u, v, X € Qp[M] and we develop a descent procedure to finally end with a
relation w = p(ug) + dvg + Ag Adby A - - - Adb,, where ug, vg, A\g € Qp. This is
exactly the content of (*). In section 5 we explain briefly the basic relations
between quadratic and differential forms. It is of expository character and
details can be found in [ Ka 1], [ A-Ba 2]. Finally in section 6, as mentioned
above, we extend Knebusch’s generic splitting theory to fields with 2 = 0
and prove the analogue of his degree conjecture.



1 The algebra of differential forms

We will consider in this paper only fields of characteristic 2. Let F' be such a
field. Let Q} be the F-vector space of absolute differential 1-forms, i.e. QL
is the F-vector space generated by the symbols da, a € F', with the relations
d(a + b) = da + db, d(ab) = adb + bda for a,b € F. In particular d(F?) = 0,
where F? = {a*|la € F} and d : F — QL is a F?-derivation.

Let us denote by Q% the n-exterior power A\"(Q2L). Thus Q% is a F-
vector space generated by the forms da; A --- A da,,. The operator d can
be extended to a FZlinear map d : Q% — Q%! by d(ada; A - -+ A da,) =
da N\ day A -+ A da,. We will write Qp or Q}, for the F-algebra @2 Q}% .
We denote by Zr the F?-sub algebra {w € Q%|dw = 0}. Since d? = 0, we
obtain the ideal Bp = d)}. in Zp of exact forms. Now let us fix a 2-basis
B = {b;,i € I} of F over F?, i.e. if we take an ordering of I, then the mono-
mials by, -+ b;,, 1, < -+ < i, form a F? -basis of F (see [ Ca] or [ Groth]
for details about p-basis). Then it is well known that the (logarithmic) dif-

ferential forms {db# JARERWA dbl?i",il < < zn} form a F'—basis of Q2%. The

Din
following fact is obvious.

(1.1) Lemma. Letn € Qp be a form which does not contain db for some
b € B, in its expansion with respect to the above basis. Then n A db = 0
implies n = 0.

Let us denote by 953] the F%-sub algebra of Q% generated by the loga-

rithmic differential db/b,b € B. Q[;] depends on the choice of the 2-basis B.
Then a well known result of Cartier (see [ Ca]) asserts that as an F?- algebra
we have

(1.2) Zp = Bp & O

Moreover this decomposition is compatible with the graduation of Q7.
Any w € Zp can be written uniquely as

db; i
w=dy+ Y g A A
i1 in

i< <in
so that we can define a homomorphism

(1.3) C:Zp— Qi



db; db;
C(w) = Z @iy, 7 1 AN, . n
11 in

11 <<y

C'is the well known Cartier-operator (see [ Cal) and it is uniquely determined
by the following properties

(1.4) O(cﬂ%) = a%

(1.5) Cldy) =0 for neQ;
(1.6) C(a*w) =aC(w) ,a € F ,w € Zp
(1.7) Cw AN =C(w)NC(N)

In particular C' does not depend on the choice of the 2—basis and ker(C) =
Bp, Im(C) = Q. Thus we get a ring isomorphism (compatible with the
graduation)

(1.8) C:Zp/Bp = Q%

For a fixed 2-basis B = {b;,i € I} of F' we define the square operator
(1.9) s:Qp — QF
by

db, 5 db,

S <zg: CLO—E) = za:a,o.a
where o runs over tuples of indices 1; < -+ < ¢, and by = b;, -+ - b;,, dby =
db;, N -+ Ndb;,. Of course s depends on the choice of B. We will write w
instead of s(w) when we have a fixed 2-basis of . Using (1.9) we also define

the following operator

p: Qp— Q%
(1.10)
o(w) = wh + w



Since s is additive, g is additive too and depends on the choice of the
2-basis B. But any other choice of a 2-basis changes p(w) by an exact form,
i.e. we get a well defined group-homomorphism

p: Qe — Qp/dp
which for every n defines a homomorphism
(1.11) @ — Q!

Using (1.8) one easily checks that
p=C"1—id

We now derive some useful properties of the Cartier operators, which will
be used frequently in the next sections.

(1.12) Proposition. Let {by,... ,b,} be elements of a 2-basis B of F'. Let
A € Q3 be such that d(ANANdby A\ --- Ndby,) =0. Then there is § € Q0 with

C(ANdby A+ ANdby) =0 ANdby A+ A db,.

Proof. We apply induction with respect to n. Assume first n = 1, i.e. let
u = AAdbbe a closed form and b € B. From du = 0 we conclude from (1.2)
that u = dn + m/? with some forms m,n. Write m = mgy + mq A % where
mgo, my are forms which do not contain db in the basis representation with
respect to B. We can also write n = ng + bny + nas A db + bng A db where
ng, n1,n2,ng do not contain odd powers of b in their coefficients nor db in
their 2-basis expansion. Thus

u = mg +mp AL+ dng+bdny +ny Adb

= AAdb

Comparing terms with db we obtain

mgﬂ +dng + bdny =0

w=ANdb=m ALty Adb+ dng Adb+ bdng A db



The second equation and the assumption du = 0 imply d(n; A db) =
dny Ndb = 0.

But since n; does not contain db as well b as odd power in its coefficients,
we see that dn, does not contain db in its basis expansion. Thus (1.1) implies
dny = 0. Thus ny Adb = d(bny), and since dny A db = d(ns Adb), bdns A db =
d(bns A db) are exact, we conclude

db
u:m[f]/\?—i-dv

with some form v. Applying the Cartier-operator to u we obtain

and 6 = b~'m; does the job. Let us now assume the proposition for all
integers less than n. Let u = AAdbiA- - -Adb,, with du = 0 and by, ... ,b, € B.
By induction

C(u) =3 ANdbg A -+ Ndb, = puANdby Adbg A --- N\ dby,

with some forms 6, 4. We can assume that ¢ is free from terms containing
dbsy, ... ,db,, respectively u is free from terms containing dby, dbs, ... ,db,, in
their basis expansion. Set § = dg + 01 A db; where 0y, d; are free from terms
containing db;. Then

do ANdby N\ -+~ Ndb, + 6 ANdby ANdby A --- A db,

= pAdby Adbs A -+ A db,.

Since dg A dby A --- A db, is free from terms containing db; we conclude
doNdba A---Ndb, =0 and C(u) = d Adby Adby A - -+ Adb,. This proves the
claim. [J

(1.13) Proposition. Let {by,...,b,} be elements belonging to a 2-basis B of
F. Let v € Qp be such that
dv € Qp ANdby A -+ A db,.

Then there exist forms z, € Zp and v € Qp with

do=| > V2 +by-bydu | Adby A~ Adby,
p#l



where p runs over all functions {1,... ,n} — {0,1} distinct from 1 given by
1(i) =i for all 1 < i < n. Here we have set b* =[]}, buu). Moreover the
forms z, and u can be chosen free from terms containing db., ... ,db, as well
as coefficients containing odd powers of by, ... ,b, in their 2-basis expansion.

Proof. We show the claim by induction on n. Let us first assume n = 1, i.e.
dv € Qp N db with b = b; € B. We write

v = vy + buy + vy A db+ bus A db

where vy, v1, v9, v3 are free from terms containing db and also do not contain
odd powers of b in the expansion of their coefficients with respect to the
2-basis B. Then we have

dv = dvg+ bdvy +vi Adb—+ dvgs A db+ bdvs A db

= dUQ + bd?]l + (1)1 + d’UQ + bdvg) A\ db

By the choice of vy, v; we see that dvg, dvy do not contain terms involving
db in their basis expansion with respect to B. But by hypothesis dv € Qg Adb,
so that we get

dvo :O, dv1 =0

since dvg and dv, do not have coefficients containing odd powers of b in their
2-basis expansion. Hence

dv = (vy + dvy + bdvs) A db

is of the desired form.
Let us assume the assertion for any integer less than n. Then from dv €
Qr Adby A --- A db,, we conclude

dv = > Wz by byadu | Adby A Adb,
UGSnfl,l/#l
where S, = {v:{1,...,r} — {0,1}} is the set of all functions {1,... ,r} —
{0,1}. Here all z, are closed and the z,, u are free from by,... b, ;. We

write
2, = Cuo+bpcy1 +cyo Adb, + bycy3 Adby,

U = ug+ bnul + us A\ dbn + bnu3 /\dbn



with ¢, ;, u; free from b, (i.e. do not contain db,, as well as odd powers of b,
in the 2-basis expansion of their coefficients). Since dz, = 0, we have

0= dC,,70 + bndcwl + Cu1 N dbn + dC,/72 VAN dbn + bndC%Q N dbn
and the choice of the c,; is imply

dC,ﬁo = O, dCMl =0

Cui + dCMQ + bndcy,3 = 0.
This last equation implies
Cv1 = dcy,27 dcl/,3 = 0.

Hence

dv = Z b (cyo + bndey ) + bl(duo +bpduy) | Adby A+ ANdby—q +
VESnfl,;ﬁ]_

1S 0l + bucus) + b (u + dug + budus) | Adby A Adb,
veSn_1,#1

The expression in the first parenthesis does not contain dby, ..., db, and
since dv € (dby A --- A db,), we conclude (see (1.1))

> b (o + badcys) + by byydug + by - - byduy =0
'UGSn71,7é]_

Since by hypothesis ¢, ¢, ¢,2, ug, u; do not contain coefficients with odd
powers of b,, in their 2-basis expansion, we conclude

> Wdeyy+ by byaduy =0
IJGSnfl,;ﬁl

By induction all ¢, 2, uy are free from by, ... ,b,_;. Then we obtain dc, 2 =
0, duy = 0. Since

dv = (Zuesn,l,;él bycl’72 + Zuesnfhi]. bnb”cu,‘&

+ 0L (uy + dus) + blbndu3> AdbyA--- A db,



is of desired form, this concludes the proof of the lemma. [J

(1.14) Remark. Under the hypothesis of the lemma above, one can give a
more precise description of the form v. By the lemma we have

do={ > bz +ordu| Adbi Ao ndb,
pneSn,#£1

where b1 = bi---by, dz, =0 for all 1 # 1. Let p be such a function and let
1 <i < n with p(i) = 0. Then

d(bib“zu N db1 VANRREIVAY dbi_l VAN dbn)

:b‘uzu/\dbl/\/\dbn—f—bzdb‘u/\zu/\dbl/\/\dbz_l/\dbﬁ_l/\/\dbn

Since 0" contains only b; with j # ¢, we see that the last term is 0 and
hence

d(bit!'z, Ndby A -+ ANdby N - ANdby) =0z, Adby A -+ A db,,.

Also bldu Adby A -+ A db, = d(bLu A dby A -+ A db,) and we conclude

(i)

dv = d (Do A bW 2 A dby Ao Adby Ao Adby + blu A dby A A, )

i.e.

(1.15)

v=>weS A e, ndby A Adb A A dby + bLu A dby A A db, + 2

with z € Zr a closed form.

The next result characterizes divisibility by pure forms and will be useful
in the next sections. We say that a form w € (p divides the form A if
A =1 Aw with some form n € Qr. Then we have

(1.16) Proposition. Let by, ... b, be elements of F' contained in a 2-basis B
of F. Let w € QF be a m-form. If dby, ... ,db, divide w, then dby A\---Adb,

10



divides w.

Proof. Let B = {by,... ,b,,...} be the given 2-basis. We show the claim
by induction on n. For n = 1 the claim is obvious. Assume the proposition
for n — 1. Then we have w =n Adby A--- Adb,_1. Write n = 19 + m1 A db,
with forms 79, 71 which do not contain db,, in their basis expansion. Then
=n ANdby N --- Ndb,_1 +m N dby A --- N\ db, is divisible by db, by
hypothesis. Since ng A dby A -+ A db,_1 does not contains db,,, we conclude
7’/0/\db1/\/\dbn_1 :0andw:771/\db1/\/\dbn ]

(1.17) Remark. Let us consider a rational function field L = F'(X,; u € A))
with A finite. Let B = {b;|i € I} be a 2-basis of F. Then BU{X,,u € A} is
a 2-basis of L. Let B C A be a subset and N = F(X,, 1 € B), respectively
M = F(X},n € B) C N. Let X be any variable X, with u ¢ B. We will
be later interested in forms contained in §2; which are generated over M by
the differentials db, b € F. Thus we will define QpM = Qr @ M C Qp,
respectively QpM[X?] = Qp ® M[X?] C Q. This last set is the M[X?]-
submodule
B MxZ)db;, A--- A dby,
11 < <lm

(for some ordering < in I) of ;. For every p(X) € N[X] irreducible and
monic we set for every n > 0

(1.18)  p = QEM[X? = {%W € VEM[X?,s > 1,degy w < sdegxp}
if p e M[X?], and

(1.19) p > QrM|[X? = {12|w € VEM[X?,s > 1,degyw < 2s degxp}
p S

if pg M[X?].
Here we have set degy w = 2t whenever we have w = wg + w; X2 + - -+ +
w; X2 with wy, ... ,w; € Q% wy # 0 for some w € QLM[X?].

Now we have
(1.20) Lemma. The sum

QEM[X?]+ > p QR M[X?] C Of

p

11



is direct. Here p runs over all irreducible polynomials contained in N[X].

Proof. Let us assume u
P _
Ug + Z ]E =0
p

in Qp, with ug, u, € QpM[X?], degy u, < s,degy p for all p. Thus

E[pspuo +3 (H q34> u, =0

P q#Dp

holds in QpM[X?]. Recall that s, is even if p ¢ M[X?], and hence p* is
contained always in M[X?].
We fix now some py and we get in QpM[X?]

(1) 1) 5 1)

q#Po P#DPo  \q#Dp

This implies that p,” divides the term (Hq oo qsq) Uy, and since Qp M[X?]

is a free module, py divides u,, in QrM[X?]. Since degy u,, < s,, degx po,
it follows w,, = 0. This proves the lemma. [J

The relevant point in the above decomposition is that the operators p
and d respect this decompositions, whenever p is defined with respect to a
2-basis containing a 2-basis of F'. Thus we have:

A MIX?] C QpM[X?)
PQrM[X?] C QpM[X?]
(1.21) dp~=QrM[X?]) C p*QpM[X?)
p(p~<QrM[X?) C p*QprM[X?

If we do not specify a particular 2-basis, the relations above must be
understood as follows. For any field F' the maps Qp — Qp given by w — wl?

12



depends on the choice of a 2-basis. If we choose another 2-basis of F' and we
denote by w® the same operation with respect to this new 2-basis, we have

w? = w® + dv

with some v € Qp. Therefore expressions of the form w!? + dv, which will
often occur in the sequel, make sense if the particular choice of the form v
does not matter. Thus, we will not make sometimes an explicit choice of
a 2-basis when dealing with such expressions. Of course the same remark
applies to expressions of the form pw + dv. For example if u € Qp and
f € F*, then for any choice of a 2-basis, the forms p(u A %) and o(u) A %
differ by an exact form.

In the concrete situation above, if we choose v € QpM[X?| and f €
M[X?], then there is some v € QrM|[X?] with

p(u/\%):p(u)/\ﬁ—k@

13



2 The behavior of differential forms under
some field extensions

We continue in this section the algebraic study of differential forms by con-
sidering their behavior under field extension. Any field extension F' — L
induces a natural homomorphism Q% — €} for all n > 0. We will denote by
QO"(L/F) the kernel of this homomorphism. It is clear that d(Q2"(L/F)) is
contained in Q" (L/F). Fixing any 2-basis of F' we see that the same holds
true for the operator p and s(= square). We are particularly interested in the
following field extension of F'. Let ¢ =< by,... b, >=(1,0)®@---® (1, b,)
be an anisotropic bilinear Pfister form (see [ Ba 1], [ A-Ba 1]). The fact that
¢ is anisotropic means that {by,... ,b,} are algebraically independent over
F? and hence can be chosen as part of a 2-basis of F. This will be always
assumed in the sequel. The function field F(¢) of the quadric ¢ = 0 is con-
structed as follows. Let S,, be the set of all maps p : {1,... ,n} — {0,1}
with p(i) = 1 for at least one index ¢ and choose a variable X,, for each
p €S, Let L = F(X,,pu € S,) the rational function field over F' in the

variables X, and set T = 3 o U*X7, where b* =[]} " (T is the so

w =11
called pure part of ¢). Then the field

(2.1) F(¢) = L(VT)

is the function field of ¢. Obviously ¢ ® F(¢) is isotropic, although it is
not necessarily hyperbolic, but metabolic. We are interested in the behavior
of Q™ under the field extension F' < F(¢). To this end we will compute
Q"(L/F), Q™(F(¢)/L) and finally Q™(F(¢)/F). We will denote by K the
field F'(¢) in what follows.

(2.2) Lemma. Let F(X)/F be a pure transcendental extension of F'. Then
Q"F(X)/F)=0.

Proof. We may assume that F'(X)/F has transcendence degree one. Let
B ={b;,i € I} be a 2-basis of F'. Then BU{X} is a 2-basis of F'(X). If

db; db;,

im

14



is in Q™ (F(X)/F), we have w = 0 in QF . But since

i b
bl‘l bz y 01 I (-

m

is part of a F'(X)-basis of 2 v, we conclude ¢;,...;,, = 0 for all 4y < -+ <y,
ie. w=01in Q7. O

(2.3) Remark. If B is a 2-basis of F, then BU{X,, x € S,.} is a 2-basis of L.

(2.4) Lemma. Let k be any field of characteristic 2 and t € k\ k*. Then
form >1

Q™ (k(Vt)/k) = Q1 Adt.

Proof. Since t = (v/t)? we have dt = 0 in Q4(v7)» and therefore Qi adt C
Q™ (k(\/t)/k). Since t € k2, we can choose a 2-basis of k, say B, such that
te B, ie B={tc;je€ J}. Then {\/t c;,j€ J}isa 2-basis of k(v/1). Let
w € Q™ (k(v/t)/k). Then we have

w=Y"apdey + () _brde,) Adt

where o runs over all maps {1,... ,m} — J and 7 over all maps {1,... ,m—
1} — J which are monotone (i.e. i < j implies o(i) < o(j) in some ordering
< of J). Moreover dc, means dcgy A\ -+ - Ndcg(my, etc. and aq, by € k. Then
in an(\/i) we get > _ay,dc, = 0. Since all ¢;, ¢ € J are part of a 2-basis of
k(+/t) we conclude a, = 0 for all o, i.e. w = (3 b,dc,) Adt. This proves the
claim. U

In particular we obtain
(2.5) Corollary. Q™(K/L) = Q7' AdT.
(2.6) Remark. In the case of a quadratic separable extension of k, say
E = k+kz with 22 + 2z = a, we may assume that a is a square in k and hence

dz = 0. In this case z is a square in E and a 2-basis of k remains a 2-basis
of E. Therefore the argument in the proof of (2.4) shows Q" (E/k) = {0}.
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(2.7) Lemma. For allm >n
QUF(p)/F) = Q" ANdby A\--- N\dby,
Otherwise Q™ (F(¢)/F) = 0.

Proof. We choose a 2-basis of F' containing {by, ... ,b,}. Let us take w in
Q™(F(¢)/F), ie. w e Q with w = 0 in QF,. From (2.4) we infer that

w = u A dIl with some u € QTL”_l. Now dT = kydby + --- + k,db,, with
some polynomials &y, ..., k, (see (2.9) below). Thus replacing db; in u we
see that one can assume that u does not contain db, in its basis expansion
with respect to the 2-basis BU{X,,n € S,}. Let us write in Qp

w = Wy + W1 VAN db1
with forms wg, w; not containing db;. Then in Q7

wWo + Wy /\dbl = U/\kldbl +uAN (kzdbg + - +k’ndbn)

(w1 + ku) Adby = wo+u A (kedby + - - - + kpdby,)

Since by is part of the 2-basis of L and the right hand side of this equation
does not contain dby, we obtain (w; + kyu) A dby = 0 in Q. But wy + kju
also does not contain db;, so that w; + kyu = 0. Thus u = kflwl, and
w =k tw; AdT. We get

which is a relation between forms all of whose coefficients are polynomials.
Now on such differential forms we can specialize the values of the variables

X, obtaining forms defined over F. Letting X, — 0 for all p # 1 and

X; — 1 and using ky — 1, k; — 0 for ¢ > 2, we get from (2.8) in Qp
W = Wy N db1

with some form w;. Thus db, ... ,db, divide the form w . The lemma follows
from (1.16). O

(2.9) Remark. The differential of the polynomial T is

dT' = kydby + - - - + kpdb,
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where ky, ..., k, are polynomials in F[X?] given by

k= Y b'WX),  1<i<n

HESn,p(i)=1

Let us recall that the Cartier-operator defines an isomorphism C' : Z}:/ B} —
Q7 where Z7 are the closed forms in Q% and By = d2x ! are the exact forms.
Following Kato (see [ Ka 1] and [ Mi]) we introduce the operator

(2.10) O QL — QL /don!

given by

ie. p=C"' —id.
For example

db, db, b, db,
2.11 NN R S N
(2.11) p( bl bn) o z

In order to complete (2.10) to an exact sequence we introduce the groups
(see [ Ka 1])

(2.12) vr(n) = ker(p)

(2.13) H"™(F) = Coker (p)
and we have the exact sequence

(2.14) 0 — vp(n) — Qg — Qr/dVE — H"(F) — 0.

Taking a 2-basis B = {b;,i € I} of F' we get the square-operator s :
O — QF given by s : (ZU aﬁ%) =>. aﬁ% (see section 1). We define

the basis-dependent operator o : QF — Q% by p(w) = s(w) — w and easily
check that

H™ W (F) = Qp/(d + o).
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Another choice of a 2-basis would change p(w) by an exact form. Thus
dQ ! 4 Q1 is basis independent.

The next two propositions are due to Kato (see [ Ka 1]) and will be used
continuously in what follows.

Let {b;}icr be a 2-basis of F' and endow I with the structure of a totally
ordered set. For j € I let F; (resp. F.; ) be the subfield of F' generated
over F? by the elements b; with ¢ < j (resp. ¢ < j). For fixed n let }_
be the set of all functions o : {1,... ,n} — I with a(i) < a(j) whenever
1 <i<j<n Weendow ) with the lexicographic ordering, namely
a < f (a, fe ) )if and only if there exists some ¢ such that a(i) <
B(1) and «(j) < B(j) for all j < i. The F-vector space 2% has the basis
{dboay A -+ N dboy, 0 € Y, } and we can introduce in Q% the following
filtration: for o € ) let Q% , (resp.Q% ), be the subspace of QF generated
by the elements dbg1) A -+ A dbg(n,y with 8 < a, (resp. 3 < «). Using this
notation we formulate the following basic result due to Kato (see also | Ka 2]).

(2.15) Lemma. Lety € F,a € ) and

by, D
ba(l) boc(n)

Wy, e Q%

be such that
(V° — yYwe € Vo +dU"

Then

day da,
YW =0+ — AN+ N —
ay Qp,

for some v € Qf ., and some a; € F;), 1 <i<n.

We will refer to this result in the sequel as Kato’s lemma. An immediate
consequence of (2.15) is

(2.16) Corollary.

da;, da; .
VF(TL):{ZL/\"'/\ a"|aikEF }

iy Qj,,
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We will now study the behavior of H"*! under field extensions. If F' < L
is a field extension we get the obvious maps vp(n) — vr(n) and H" ™ (F) —
H"(L). We write H""}(L/F) for the kernel of H""'(F) — H"T'(L).
The main goal of this paper is the computation of H"™(F(¢)/F) for an
anisotropic bilinear n-fold Pfister form ¢ defined over F'. This will be done
in section 4. We will now consider only some easier field extensions.

(2.17) Lemma. Let F(X)/F be a pure transcendental extension. Then
H""(F(X)/F)=0

Proof. Let B = {b;, ¢ € I} be a fixed 2-basis of F. We may assume
that F'(X)/F has transcendence degree one. Then BU {X} is a 2-basis of
F(X). We fix an ordering in I (and hence in B) and we choose the ordering
of BU{X} with X > b; forall i € I. Let w € H™'(F) with @ = 0 in
H"(F(X)). Thus in Q% (x) we have

w = pu+ dv

for some u € Q}( x) and v € QT}&) Here g is defined with respect to the
2-basis BU{X}. Hence pu = w+dv with w € Qp. Let a € ¥, p C X, p(x)
be the leading index of w, that is w = Zvezn,p wv% with w, # 0 and
w, = 0 for all v > a, and 8 € ¥, p(x) the leading index of u. If 8 > a,
since p(uﬁ)% € dQ’;&) + Q% (x).<5» We apply Kato’s lemma and conclude
that uﬁ% =u + %1 A A %ﬂ’ with a; € Fp) and v’ € Q%(X),<ﬁ' By this
way we can replace u by a differential form with lower leading index. This
means that we may assume 3 < «. Then we have

B _

(p(ua) +102) T

d(v) mod Uy, -,

with v € Q}?}() Since by;) < X for all i € I, we conclude that we may

assume that the coefficients of d(v) are in F((X?). Because if we write v =
vo + Xv1 + v AdX + Xvz AdX where vy, vy, v2, v3 are generated over F/(X?)
by the differentials db;, i € I, we get

dv = dUo + Xd?]l + (Ul + dUQ —|—de3) AdX

and hence v; + dvy + Xdvsz = 0. By the choice of the forms vy, ve, v3 we infer
from the last relation that v; + dvy = 0 and dvs = 0. Therefore inserting
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v1 = dvy into v we obtain
v =1+ d(Xvg) + Xd(Xvs)

and since d(Xd(Xwv3)) = dX N d(Xvs) = 0, it follows dv = dvg. Thus we
may replace v by vy and we can assume that v is generated over F(X?) by
the differentials db;, i € I. Then u is also generated over F(X?) by the
differentials db;, i € 1.

Therefore the relation p(u) + w = d(v) holds in the subspace

X% & P p (X of Uy,

p

where p runs over all irreducible polynomials in F[X?]. Let us write
uazua,0+zua,p ) U:UO+ZUp )
p p

with a0 € F[X?], vg € Q% [X?], resp. u, € p~F[X?], v, € p=Q0% X2
Then

o _ b,

db,, n
Wap= = PlUa07- + dvo + zp: (@Ua,pa + dvp) mod p(x) <a

and since p, d are compatible with the above direct sum, we see that

db,, db,

wab— = @ua,ob— +dvy mod Q%m[Xz]

holds in Q%[X?]. We write now g o = Uag + X *us, vg = Tg + X* v, with
us € F, v, € Q%1 and 25 = deg(uag), 2r = deg(vp), deg(tiag) < 2s,
deg(vg) < 2r. Thus

db db
Wa = = llag— + dT + [X w4+ X5 4+ X*dv, mod O, [X7]

Let us first assume 4s > 2r. Then comparing coefficients we get uLQ}‘ib—“ €

Q% -, and applying the Cartier-operator it follows us = 0, which is a contra-
diction. Similarly if 2r > 4s, then dv, € Q% _,, including X 2r du, in Q% <>
we conclude that we can lower the degree of vg. Thus we are lead to the
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case 4s = 2r. If 4s = 2r > 0, then we get um = dv, mod QF% _, and

db“ € QF@, that is us‘éb“ = 0,

which is a contradiction. Thus we have s =r =0, i.e. w7 dba = PUg db“ + dvg
mod QF _, with ug € F and vy € Qp. Replacing in w, thls See W can be rep-
resented by a differential form with lower leading index. This shows w = 0
in H""(F), and concludes the proof of the lemma. (]

applying the Cartier operator we obtain wu,*

In particular we have H™"(L/F) = (0) for all m, where L is the field
extension F'(X,,, u € S,,) introduced at the beginning of this section.

We want now to compute H™(F(¢)/L), where F(¢) = L(V/T) (see
(2.1)). To this end we prove the following general fact.

(2.18) Lemma. Let k be field of characteristic 2, and b € k\ k. Then
H™ ™ (k(Vb)/k) = Q7L A db

Proof. Since b € k \ k? we can take b part of a 2-basis of k. Let
B = {by = b,by,...} be a 2-basis of k. Then B = {v/b,by,...} is a 2-basis
of k(v/b). Take now w € H™ ' (k(v/b)/k), i.e. w € H™ (k) with w = 0 in
H™ 1 (k(+/b)). This means

w = pu+ dv

with u € Q. v € QZE\‘/IE). We order the 2-basis B with v/b > b; for all

i (#£1). Let @ € ¥k, (i) > 1 for all i = 1,... ,m, be the leading index
of wand (3 € Zm,k(\/é) the leading index of u. Thus we can assume, as in the
proof of (2.17), f < «a. In this case we have

db,
(p(ua) + wa) b— = d</U) mod QZ(

Vb),<a

with v € QZ(_\}E) Since ba) < Vb for all 7, we conclude that the leading

coefficient of d(v) is in k, then u, is also in & and we may assume that
ve QP

Smce ker[QQ" — Qm ] Q1 A d(b), we conclude that
db,, db,, -
ey = p(ua)b— +d(v) mod Q _, + Q LA d(b)
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in Q7". Replacing in w, this shows w can be represented by a differential

form with lower leading index. This shows w € Q"' Adb in H"*'(k), and
concludes the proof of the lemma. []

(2.19) Corollary.
H"™ (P (6)/L) = Q7T AdT

Let us close this section with some remarks concerning the computation
of H"(F(¢)/F). We write y = /T, so that K = F(¢) = L[y]. Fix a 2-basis
B={b;,iel}of F,sothat BU{X,,u € S,}is a 2-basis of L. We order the
elements of B according to an order of I and the elements of { X, u € S, } for
example using the lexicographic ordering and we set B < {X,,u € S,,} for
an ordering in BU{X,, u € Sp}. Since y> =T =37 0" X} in K, we see that
the elements of B are not 2-independent over K2. Let us fix some b = b; € B.
Then B\ {b1} U{X,,n € Sp} U{y} is a 2-basis of K. We order this basis
such that y is the maximal element. In particular we have the operator g on
Qx defined with respect to this 2-basis. Take now @w € H"™(K/F). Then

(2.20) w = pu + dv

with u € Q% and v € Q' From pu = w + dv, and using Kato’s lemma
with a filtration defined by the above ordering, we see that one can assume in
(2.20) that v and v are differential forms generated over K by the differential
db;, i € I (i # 1), i.e. they do not contain differentials of the type dX,
or dy. Looking at the 2-basis expansion of both sides of (2.20) we easily
conclude that v and v do not contain y in their coefficients, i.e. they are
contained in L. Therefore the forms u, v (and w) are defined over L and are
generated over L by the differentials db;, i € I. From (2.4) we conclude that
w+ pu+dv e Q(K/L) C Q} as a form in QF, and using (2.4) we obtain in
Q;

(2.21) w=gpu+dv+ AXNdT

with A € Q77'. We will show below that the coefficients of u, v, A in the
2-basis expansion of L do not contain odd powers of the variables X, and
that A also is generated by the differentials db;, © € I. Therefore if we define
the subfield of L

M=FX; pebS,) CL
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we see that all forms u, v, A\, dT" and w are generated over M by the dif-
ferentials db;, © € I, i.e. they are contained in the subspace Qp @ M of €.
We show now this assertion. The fact that A does not contain differentials
dX,, p € S, follows from (2.21) and the fact that all other forms, including
dT', do not contain such forms. Let us write u = ug + Xuy , v = vg + X0y,
A = Ao + X\, for some fixed X = X, and where u;, v;, A; (¢ =0,1) do not
contain odd powers of X in their coefficients, with respect to their 2-basis
representation. Then in 27

w = pug + X2ul? + Xuy + dvo + Xdvy + v1 AdX + Mg AdT + XA AdT

and this implies

(2.22) w = pup + Xul + dvg + Ao AdT
(2.23) uy +dvy + A\ AdT =0
(2.24) vy AdX = 0.

Since v; does not contain dX, we obtain from (2.24) v; = 0 and therefore
uy = A1 A dT. Inserting this in (2.22) it follows

w = pug + duvg + (Ao + X2TAP) A dT,

since from u; = TA; A 4 we get ul? = 7202 A @ — TAP A dT. The form

Ao+ X 2T)\[lz] does not contain odd powers of X , and the above equation
therefore shows that we can eliminate all odd powers of X from wu, v and .
Since X = X, was arbitrary, this proves the claim. Therefore we have shown

(2.25) Proposition. Let w € H"™ (K /F) and fix a 2-basis B = {b;,i € I}
of F'. Then there exist forms u, v, A in Qp @ M C €, i.e. generated over
_ 2 . . . .
M = F(X, € Sy,) by the differentials db;, i € I with
w=gpu+dv+AANdT
where @ is defined with respect to any 2-basis of L containing the basis B

The next two sections will be devoted to the study of this equation.
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(2.26) Remark. The behavior of vp(m) under field extensions is easier
to handle than that of H™™(F). For example (2.7) implies Q™(F(¢)/F) =
QF " AdbyA---Ndby, if ¢ =< by, ..., b, >. Hence ker(vp(m) — vpg)(m)) =
QP Adby A+ - - Adb, Nvg(m). Thus this kernel is determined by the following

(2.27) Lemma. For any a € Q™" the following statements are equivalent:

(i) a/\db—bll/\---/\iﬁEVF(m)

(i) pla) € Y B[QEP 4 aQpt Y Qp T Adb,
€€ESn,,e£0 i=1
where € = (€1, ... ,€,) Tuns over all sequences with ¢, =0 or 1.

Proof. Choose a 2-basis B of F' with bq,...,b, € B. Without restriction
we can assume B finite, i.e. B = {by,... ,b,,... by} and let us denote by n
the differential form % A A %.

1. First we prove that (ii) implies (i). Let a be an element in Q7" such
that p(a) € > s, 20 b QB 4 A 3 QR Adby, e
a can be written as

a=a”+Y v AP +dB+) E; Adb;

€40 i=1

with A. € Q™" B € Qu"!, B € Q"1 Since (X bAZ) A
and dB A are in d(QQ21), and E; A db; An = 0, we obtain that

dlann) =0

and

Clann) = C((a®+> 0 AP +dB+Y " E; Adb;) An)
40 i=1

= ClaPAn)+> CO AP An)+C(dBAn) =arn
e#0

This implies that a A € v(m)pr and proves (i).
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2. Now let a be in Q7" such that a An € vp(m). We write a as

db by (1
where 22 = 28 AL A Do) and ¢ € F. Note that a A7 € vp(m)
by bu(1) bu(m—n)

implies that d(a An) =0 and C(aAn) =aAn.

Be k£ the maximal index k > n such that

a = RQ + kal
where Ry, R; are differential forms generated by ‘Z—bll, e ‘ﬁ’—NN, with
coefficients in F2(by,... ,by_1). Also we decompose Ry and R; as Ry =
Mo+ My AG: and Ry = My + Ms A %%, Then d(aAn) = 0 implies that

db db
d(Moy) + brd(M;) + by My A W B (d(My) + bd(Ms)) A o FlAn=0
k k

which means that

d(My)An = 0
d(My)An = 0
d(My)An = 0

My Anp = dMsAn.

From the last relation we obtain M; = d(Ms3) + E where E is in
QA Cé—bll e QR A %. Replacing in the above decom-
position of a A n we get

db
a:M0+M2/\b—k+d(bkM3)+E.
k

Now we work with a' = My + Mz A %’" which is also generated by %,

o, By with coefficients in F2(by,. .. ,bg_1). Since d(My) An =0 and
bn

d(Ms) A = 0 we have that «’ Anp = 0. By repeating of the above

procedure on a’ we conclude that a can be written as

a=M+dG)+H
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where M is generated by db1 e ‘ibN with coefficients in F2(by,. .. ,by,),

GeQp ™ 1andH1nQ}? ne 1/\db11—|—~~+Q7£ n 1/\%ﬂ. This means
that a can written as

Z cu——i—d G)+H
HEXm—n

where each ¢, isin F2(by, ... ,by),1.e. ¢, =Y c; b withe = (e1,... ,€,)
running over all sequences with ¢; = 0 or 1. Reordering the above re-
lation we obtain

db
a = E b (g ci’eb—:> +d(G)+H
€ w

Note that each ( " ci,e%> is in QE] so we will denote it by AP By

this way we write a as

o= AP +d(G)+H = AP + > 042 + d(G) + H.
e#£0

Finally we compute C'(a A 7). Since b AP A, d(G)An € d(Qp1) and
H An =0, we have

Clann) =CAR An) = Ay An.

Using that C'(a An) = a A n, we obtain a = Ay + H' with H' in
Qurla % o QETTLA %. This means that
a=a”+> AP +d(G) + H”
e£0
where H” = H + H’, completing the proof. [J

Considering the case m = n we obtain
(2.28) Corollary.

db, db, }

ker(vp(n) — vp@g(n)) = {ab—l ARERNA —|@( ) € Dr(¢)
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3 Some technical results

Let us first recall some notation. Let S,, be the set of maps p: {1,... ,n} —
{0,1} with p(i) = 1 for at least some index . If p is defined by u(i) = 1,
p(j) = 0 for j # ¢ we write ¢ instead of p. Let L = F(X,,pn € S,) and for a
fixed 0 <s <nweset N=F(X,|u#0,...,s), M =F(X:|u#0,...,s),
(if s =0 we get N = L and M is the field introduced in the last section).

(3.1) Lemma. Let X = X,. If f € M[X?] is decomposed in monic irre-
ducible polynomials in M[X], say

f=a]]p™ (a € M)

then for each p holds p € M[X?] orn, =0 (mod 2).
Proof. Let p € M[X] be an irreducible factor of f and assume p ¢ M[X?].

This means Dx(p) # 0, where Dx(p) is the derivative of p with respect to
X. Let us assume n, = 2t + 1 for some ¢ > 0. Since f € M[X?] implies

Dx(f) =0, we obtain
Dy (apZt—l-l anq> -0
a#p

ap%HDX (H qnq> +a (H qnq> 2tDX -0

q#p q#p

(H q”‘?) Dx(p) = pDx (H q”‘?)
q#p q#p

But deg Dx(p) < degy(p) implies that p divides [],_, ¢" in M[X], which
is impossible. This proves the claim. [

For any irreducible monic polynomial p € N[X]|(X = X;) we will write
N(p) for the quotient field N[X]/(p). Let us fix a 2-basis B = {b;,i € I} of
F,so that BU{X,\p#1,...,s}is a 2-basis of N. If p € M[X?], there is
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some b; € B such that B\ {b;} U{X,,u#1,...,s— 1} is a 2-basis of N(p),
where X, denotes the image of X, in N(p). If p & M[X?] then B is part
of a 2-basis of N(p) and in fact there is some index iy # 1,...,s — 1 such
that BU {X,,p # i0,1,...,s — 1} is a 2-basis of N(p). The natural map
N[X] — N(p) induces a homomorphism QFM[X?] — QF

(3.2) Lemma. a) If p € M[X?]

ker(Qp M[X?] — Q) = PUEM[X?] + QP ' M[X?] A dp

b) If p & MIX?]

ker(QpEM[X?] — Q%(p)) = p* QP M[X?]

Proof. a) Since p € M[X?], there is some b, € B such that D, (p) # 0 in
N(p), because otherwise one would infer that p is a square in M[X]. But in
N(p) we have 0 =dp =3, D, Dy, (p)db;, where Dy, (p) # 0 is the coefficient of
dby,. Choose A € M[X? with A - Dy (p) =1+ p-rin M[X? and let A be
the image in N(p). Then

dby, = AZDb )db; in Q)
i#k

Let w € QWM[X?] be in the kernel of Q2M[X?] — QY 1e. w=01in
Qn (). We have by definition of Q7 M[X?]

w =" aydb, + (D csdbs) A dby
0 4

where v runs over all > (I) with & ¢ Im(y) and 0 runs over > (1)
with k£ ¢ Im(d) and a,, ¢, € M[X?. Recall that > (I) are all maps
v:A{l,... ,m} — I withy(1) <--- <~v(m) in a fixed ordering of I. Then in
QY

(»)

> aydby + () csdbs) AN Dyi(p)db; =0

itk

(we omit the bars for simplicity).
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Thus

D (ay+A ) Dy (p))dby =0

kv dUj=vy

Here k & v means v € >, (I) with £ ¢ Im(y) and § U j = v means that
d € (I)can be extended to v with j € Im(7).

Since B\ {b;} is part of a 2-basis of N(p) it follows that the db., k & v
are linear independent over N(p) and hence in N(p)

ay=A Z cs Dy, (p)-
U=~y
Then in N[X] we have
ay=A Z ¢y Dy, (p) + 1y - p
dUj=v

for each y € 3. | k & ~, with t, € N[X] . It follows easily that ¢, € M[X?]
for all 7, i.e. the above relation holds in M[X?]. Inserting in w we obtain

w = Zkg'y(ZJuj:'y ACngj (p) +pt7)db’y + (Zkgé C(sdb(s) A dbk
= Yas(csdby + A csDy, (p)dby) A dbs +p Y, thdb,

= Zk€5 cs(dby + A Zj;«ék Dy, (p)db;) A dbs + p Zk@ tydby

Replacing the coefficient 1 of dby, by 1 = ADy, (p) + pr, we get

w = Z csAdp A\ db + p(z t,dby + 1 Z csdby, A dbs) = wy A dp + pws
kgs kg kgs

with wy, wy in QpM[X?].

b) Let us assume p & M[X?]. Then B is part of a 2-basis of N(p). Let
w € ker(QEM[X?] — Q1) and set w = >°_a,db, € QpM[X?], v € 3°,,
a, € M[X?]. Thus Y d,db, = 0 in Q% (p), and by the remark above, we have
ay =01in N(p) for all . Thus a, =p-t,, t, € N[X].

But a, € M[X?] implies Dx,(a,) =0 for all p#1,...,s — 1. Thus

Dx,(p) - t; +pDx,(t,) = 0.
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We have p ¢ M[X?], so that there is some p # 1,... ,s—1 with Dy, (p) # 0.
Choose this 4 in the equation above. Then it follows p|Dx,(p)t, in N[X]
for all v. But p does not divide Dx, (p), and hence t, = ps,, s, € N[X].
Thus a, = p*s, for all v, and since a, € M[X?], it follows s, € M[X?] for
all . Therefore w = p*s with some s € QM [X?]. This proves the lemma. [J

Let u € QrpM[X?] be a form generated over M[X?] by forms defined over
F. The choice of any 2-basis B of F' enable us to define ul® (resp. p(u))
and this form is uniquely determined module dQ2M[X?] (see remark (1.17)).
We are interested in the behavior of ul? under the reduction homomorphism
QrM[X?] — Qn(), where p is any irreducible polynomial in N[X]. In par-

ticular we want to compare ul? with @!?, where this last square is taken with
respect to the 2-basis of N(p) as defined at the beginning of this section. In
this case we have

(3.3) Lemma. o
ul? —a? € dOp M[X?]

(3.4) Lemma. Let u,dv,\ € QxM[X?] and T € M[X?|, defined by T =

wy?2
ZuESn7u¢1,--.,sfl b Xﬂ'
Assume

u +dv=XAdby A---Adb, AdT
in Qn (), where p € N[X] is irreducible and monic and by, ... ,b, € F. Then
a) If p e M[X?], there exists §,uy, us € QpM[X?] such that

u=0 ANdby N\--- Ndb. NdT + puy + us A dp.

b) If p & M[X?], there exists §,u; € QrM[X?] such that

uw=0Adby A--- Adb, ANdT + p*uy.

Proof. Since ul? + dv is closed, we can apply the Cartier-operator to this
form and we get C'(ul?l + dv) = u. Thus in Q)

u=CAANdby A+ Adb. NdT).
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If dby A -+ Adb. AdT = 0, then u = 0 and the lemma follows from (3.2).
Thus we can assume dby A -+~ Ndb. NdT # 0, in Q (), and therefore we can
take {b1,...,b., T} as part of a 2-basis of N(p). Then (1.12) implies

u=0ANdby A---ANdb,. NdT

with some § € Q). We will show that J is contained in the image Qp M[X?]
of QpM[X?] in Q). It is clear that once we have this, the lemma follows
from (3.2).

a) Assume p € M[X?]. Then there is some iy € I such that B\ {b;, }U{X,,,
w#1,...,s—1}is a 2-basis of N(p) (we have chosen a 2-basis of F' including
bi,...,b). We write in Q)

§ =00+ 6 NdX
where g, 6; are forms not containing dX = dX,. Then
u=030Adby A---ANdb, NdT + 6, AdX Ndby A--- ANdb, NdT

Since u € QpM[X?] can not contain dX in its expansion in this 2-basis of
N(p), we conclude that

uw=27dyAdby A---ANdb, NdT

(Notice that the expansion of db;, coming from dp = 0 in Q) does not
contain dX, because p € M[X?]).

We can proceed in the same way with the other variables X, # 1,... ,s—
1, and we finally obtain that ¢, is free from all differentials dX,, p #
1,...,s — 1. Thus Jy is generated over N(p) by the differentials db;, i €
I\ {ip}. We write now the coefficients of dy in the 2-basis expansion. First
we set 0y = &y + X3 where X appears in the coefficients of ), d; only in
even powers. Then

uw=208yAdby A+ ANdb. NdT + X&ydby A -+ A db, \NdT

The fact that u is in Qp M[X?] implies that the coefficients of u (in the 2-
basis expansion) do not contain odd power of X. Comparing coefficients we
obtain

=20y ANdby A---ANdb, NdT
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with &) free from odd powers of X. Doing the same with the other variables
we finally conclude u = § A dby A --- A db, A dT with § € QpM[X?]. From
(3.2) follows the claim. The case (b) i.e. p € M[X?] can be treated in a
similar way and we omit the proof. [

(3.5) Lemma. Let p € M[X?] be irreducible and monic (in N[X]). If
pu=v Adp
in QpM[X?] with u,v € Qp M[X?], then there exist vy, vy € QpM[X?] with

v = pv1 + vy A dp.

Proof. Since p € M[X?], we have Dy,(p) =0 for all i #1,... ;s — 1. Thus

dp =" Dy, (p)db;.

i€l

The fact that p is irreducible implies dp # 0 and hence there is some iy € [
with Dy, (p) # 0. Let us write p(X) = X2 ... = pg+b;,p1, where pg, py are
polynomials whose coefficients do not contain odd powers of b;, in the 2-basis
expansion. Hence Dy, (p) = p1 and degy p1 < degp. In particular p /p.
Therefore one can find polynomials A, ¢ € M[X?] with Dy, (p)A =1+p-t.
Let us set u = ug + uy A dby,, v = vo + v1 A db;, with ug, uy,vg, vy free from
db;,. Thus

p(uo +ur Adbiy) = (vo + v1 Adbyy) A (Dy, (p)dbi, + Z Dy, (p)db;)
1#10

implies
puy = vy A Z Dy, (p)db;

pur = Dy, (p)vo+v1 A Z Dy, (p)db;.

iio

Taking modulo p this equations, we obtain in Q)

(D, (P)vo = v1 A Z Dy, (p)db;
iio
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and since ADy, (p) =1 in N(p), it follows

But all these forms are contained in QpM[X?| so that (3.2) (a) implies

v9 = Avg A Z Dbi (p)dbz) + pvs + vy A dp
iio

with vs, vy € QpM[X?]. Inserting vy in v = vy + vy A db;, we get

vo= Avy A Dy (p)db; + pus +va Adp +vi A db,
i#io
= vy A (A Z Dy, (p)db; + db;,) + pvs + vy A dp.
i1#10

Since 1 = ADb;,(p) +p -t in M[X?], we get

v = v A(Adp+ ptdb;,) + pvs + vy Adp
= p(vy Atdb;, + vs) + (Avy +v4) Adp

which shows that v has the desired form. O

(3.6) Lemma. Let dv, X\ be forms in QpM[X?], by,... b, € F be 2-
independent and T as before. Assume

dv=ANdby \---ANdb. NdT
in QN (p), where p is monic and irreducible. Then
a) If p € M[X?], there exist §, vy, va € Qp M[X?] such that
dv =0 Ndby A --- ANdb. NdT + d(pvy + vy A dp)
b) If p & M[X?], there exist 0, v; € QpM[X?| such that

dv=386Ndby A--- Adb, ANdT + p*duv;
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Proof. If dby A--- Adb, AN dT" = 0 in y(,), and therefore dv = 0, we may
use (3.2) to prove the lemma. Hence we will assume dby A --- Adb, AdT # 0

in (), and for the time being we set T' = b,y. Thus by, ... ,b.41 can be
chosen as part of a 2-basis of N(p). From (1.13) and (1.14) we infer in N(p)

0= bbrz Adby A Adbi A by + 0 u AdD A Adbyg + 2
o

with z,, z closed forms in Qy,, ¢ running over the index set indicated
by (1.13). We shall next prove that the form z,, u, z can be chosen in
QrM|[X?]. Let us first assume p € M[X?]. We take a 2-basis of N(p) of the
form B\ {b;,} U{X,} where X, are all variable involved (X = X,). Let us
fix some variable X, which we denote by Y. Thus in N(p) we have

Zp=¢eu1+Yeuo+ (eus+ Yeua) NdY

with forms e,,; free from dY and whose coefficients are free from odd powers
of Y. There are similar decompositions for u, z. Since z, is closed we get

0=de,1+Yde,o+e,0 ANdY +de,3 ANdY +Yde, s AdY.
Thus we obtain
de,1 =de,a =0, e,2=de,s.
Inserting these expressions for z,, u and z in the equation for v, we get

vo= ) btz Adby A Adbi A Adbgy
o
+oluy Adby A Adbpay + 21

when all z,; and 2; are closed and moreover z, 1, z; and u; are free from ay
and Y. Doing the same with the other variables, we finally conclude that
the forms z,, u and z can be taken in QpM[X?).

Therefore we have v — Zu bibtz, Ndby A - N dAb,- A ANdbppg — blu A
dby A+ ANdbyyq — z € ker(QEM[X?] — Q%) and from (3.2) it follows

vo— S bz Adby A Adbi A Adbygy — DYu Adby A A dbyg — 2
“w

= pvi+vaAdp
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with some vy, vy € QrpM[X?]. We apply now d to this relation and obtain
(a).

Let us now assume p ¢ M[X?]. Then these is some index pg such that
Dx, (p) # 0 and BU{ X, # po}U{y}, where y is the image of X in N(p), is
a 2-basis of N(p). All variables X, it # 110 as well as y can be handled in the
same way as in the first case, so that we are led to consider only the variable
X,,- Via the relation dp = 0 we express dX,, in terms of the other differen-
tials, so that we may assume that all z,,u, 2 do not contain dX,, too. Thus
Xuo may appear in odd powers in the coefficients of z,,u,z. Let us write
p = po + X, p1with po, p1 not containing X,,; in odd powers. Thus in N(p)
we have X,, = po/p1, so that replacing X, by po/p1 in these coefficients,
we get rid of the odd powers of X, , but there appear again the variables
Xy, b 7 o, in these coefficients. We apply again the above procedure to get
rid of the odd powers of these variable in the forms z,,u, 2. Therefore we

may assume z,, u, 2 € QpM[X?]. The assertion (b) follows again from (3.2).
0

(3.7) Lemma. Let by,...,b. € F be 2-independent in F and let T be as
before. Assume for a form A\ € QpM|[X?]

ANdby A== ANdb. NdT =0

in Q). Then

a) If pe M[X?| and dby A\--- ANdb, NdT # 0 in Qnyy), there exist A, Ao €

QpM[X?] with
ANdby A== ANdb. NdT = (pAy + Ao Adp) Adby A -+ Adb,. AdT

in QpM[X?].

b) If p & M[X? and dby A --- Ndb. NdT # 0 in Qpyp), there exist \y €
QpM[X?] with

AAdby A --- Adby ANdT = p*Xy Adby A -+ Adb, AdT

in QpM[X?].

¢) If dby A --- Ndb. NdT = 0 in N(p), there exists t € M[X?| with
degyt < degyp and dby A -+ Ndb. NdT = dby A --- N db. N\ d(pt) or
=dby A--- Nd(pt) A--- Ndb. NdT for some 1 < i <r, this case only
occurs for p € M[X?].
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Proof. Let us first assume dby A+ - -Adb, AdT # 0 in Qy ). Then by, ... b, T
can be chosen as part of a 2-basis of N(p) and the assumption AAdby A--- A
db, N dT = 0 implies (see (1.1))

A:ZémdbiJréAdT
1

with some forms &;,6 € Q). Since X € QM[X?], one easily shows that the
forms &;, 6 can be chosen in QrM[X?] too. Then (3.2) implies

A= i Adbi+ 6 AdT + pAy + Ay Adp
i=1
if pe M[X? and A = > 6 Adb; + 6 AdT + p*Xy if p € M[X?], where )y,
Ay € QpM[X?]. Taking the product with db; A -+ A db, A dT we obtain a)
and b). Let us assume now db; A -+ A db, A dl' = 0 in Qnp). We write
bry1 = T for the time being, and we choose (after reordering) a maximal
2-independent subset {by,... ,b; } of {b1,...,b,41}. For example one could
have a relation T = b,y = Y. u pibu, where p runs over the set of map

pe {1, jo} — {0,1} and p, € N(p), b, = [[° v Then we can write

=1 "1
T = Y poby +p-tin N[X], with p,,p,t € N[X]. Since T,p> € M[X?],
it follows p -t € M[X?], and (3.1) implies p,t € M[X?], or t = p - £ with
¢ € M[X?]. Thus we have

T=> pibu+p-t, pt € M[X?
or
T=> pbu+p* -, (€MX?

and p ¢ M[X?]. But in the last case we see that degy(p?l) > degy T and
degy pibu (since p,, can be chosen with degy p, < degy p). This means that
p & M[X?] never happen. Therefore

dT = Zpidbu + d(pt)
with ¢t € M[X?] and degy t < degy p. Tt follows

dby A -+ ANdb. NdT = dby A -+ A\ db, N\ d(pt).
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The same argument applies for the case that some by (k # r + 1) is 2-
dependent of {by,... ,bj,}. We omit the details. [J

(3.8) Lemma. Let p € M[X?] be a monic irreducible polynomial in N[X].
Let u,v, A € QpM[X?] be such that

pu—i—dv:)\/\dbl/\/\dbs_l/\dT iHQN(p)

where by, ... by 1 € F* and T = b, X? + T’ as before (degy T" = 0). Then
there exist forms ui,uz,d € QpM[X?|, fi;, gij € M[X? with deg(f;;) <
deg(p) and f;j9;; =1 ( mod p), such that

U= Z(gildfil) A AN Gimdfim) + pur +us Adp

(2

+ ONdby A+ Ndbs—y NdT
holds in QpM[X?].

Proof. If dby A---ANdbs_1 AdT =0 in Qf\,(p), then pu = dv, and we conclude
from (2.15)

_ dfin dfim

with certain f;; € N(p)*.

Taking g;; € N[X]| with g;;fi; = 1 ( mod p), we obtain v = ). gadfi A
-+ A gisdfis. Since u € QpM[X?] one can show that the f;; and g;; can be
chosen in M[X?], and we can now apply (3.2). Thus we can assume db; A
- Adbs_y NdT # 0 in Qy(p), and hence dby, ... ,dbs_1,T are 2-independent
in N(p). We choose a 2-basis of F' which contains {by, ... ,bs_1} and we take
the constructed 2-basis of N(p) for the case p € M[X?] as indicated after the
proof of lemma (3.1). The excluded index iy can be chosen # 1,... ;s — 1.
Moreover we replace the next element b, by the image T of T in N(p) and
we write b, for T. Thus the new 2-basis of N(p) is now {by,... ,bs_1, by =
T,... ,b;o,... v, Xy #1,... s — 1}, We order this basis such that all
b; < X, for all g and all ¢. In X, n¢) We choose the lexicographic ordering
and with respect to this ordering choose a minimal with o > ~ for all v with
(1) =1,...,79(s) = s. Hence if u € Qf, _, then there exists some § with

u =0 Adb A---Adbs and ¢ in the image of QrM[X?]. We choose now
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B € X n(p) minimal with the property u € {dy(,),s. This means that in the
representation of u with respect to the above 2-basis of N(p), 3 corresponds
to the leading index of this representation. Since u comes from QrM[X?] we
see that bg(;) € M[X?] for all i. Now we conclude that N (p)gu) C M[X?].

If 3 < o we have u = dAdby A+ - -Adb, with ¢ in the image of Qr M[X?], and
we are done by (3.2). Assume now a < . Then we have AAdb; A---Adbs €
QN (p),<p and hence

p(u) € Q)< + dQy(p)-
Applying Kato’s lemma one gets

da da
u:_lA...A—m+ul
ai A,

in Q) with v’ € Qng)<g, @i € N(p)se) C M[X?]. The form v’ is contained

in QpM[X?] because u and also C% ARERVA Cff—: belong to Qr M[X?]. We apply
now the same procedure to v’ until we get

dfi,l dfl,m
u:zf“ JAREEIAN i + v

with all f;; € M[X?] and v € Qp(y),<a- By the remark above we conclude
v =20Adb; A--- Adbs with § in the image of QpM[X?]. All f;; € M[X?]
can be chosen with degy fi; < degy p. Let g;; € M[X?] with f;;9;; = 1(
mod p). Inserting in the above equation and applying again lemma (3.2) we
finally get the desired result. [
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4 The kernel H""(F(¢)/F)

In this section we will prove the main result of this paper, namely

(4.1) Theorem. Let ¢ =< by,...,b, > be an anisotropic bilinear Pfister
form over F'. Then for m >n

H™ Y F(@)/F) = Q2" Adby A -+ A db,,.
If m < n, then H""(F(¢)/F) = 0.

Let us write during this section K for the function field F'(¢) of the conic
¢ = 0. In section 2 we have shown that w € H™(F(¢)/F) holds if and
only if w satisfies the following equation in 7'

(4.2) w=pu+dv+ANdT

with w,v, A € QpM' C Qp, where M’ is the subfield F(X?2|u € S,) of
L=F(X,|pes,),and QpM" denotes the subspace of €1, generated by the
forms db,b € F' over the field M'. Recall that T'=3_ o b X and S, is the
set of all maps w: {1,... ,n} — {0,1} with at least one value p(i) = 1. We
will develop a descent procedure, which starting from (4.2) will led us to an
equation w = pu + dv+ A A dby A --- N\ db, with u,v, A\ € Qp in Qp.

Let us fix some integer s with 1 < s < n. Set M = F(X|u € Sy, p #
1,...,s),X = X, and let us consider the equations in €,

(4.3) w=gpu+do+ANdby A--- Ndbs_y NdT

with w € Qp, u, v, A € QpM(X?) and T = b, X*+T", degy T = 0 and T" is
a polynomial in X7, 1 #1,... s over F. The equation (4.3) for s = 1 is just
(4.2). Our strategy is to start with (4.2) and to push up the index s until we
get the factor dby A --- A db, and then to eliminate the rest of the variables
until we get the desired equation w = pug + dvg + Ag Adby A --- Adb, in Qp,
which is obviously the assertion of (4.1).

Any u € QpM(X?) can be written in the form

(4.4) U= uy+ Z Uy
p

with ug € QrM|[X?], u, € p~>°QrM[X?], p running over all irreducible
monic polynomials in N[X], where N = F(X,,n # 1,...,s). Recall that
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p~>°QpM[X?] denotes the space of forms u/p" with v € QpM[X? and
degy u < degy(p") (see section 2). Fixing a 2-basis of F' and N we have seen
that the operators p and d leave invariant the spaces Qp M [X?], p~*Qr M[X?]
(see (1.21)). Let us now insert in (4.3) the decompositions u = ug+Y  u,, v =
vo+ > v, and A = Ao + Y A, The terms A\, Adby A -+ Adbs_y A dT can
contribute eventually with an integral form (i.e. from QrM[X?]) , which we
will denote by E,. Thus A\, Adb; A --- Adbs_y NdT + E, € p~*QrM[X?].
Thus we conclude from (4.3), (1.20) and (1.21)

(4.5) w=ug) + g+ dvg + A Adby A Adb_y NdT + Y E,
p
(4.6) 0 =ul +u, +dv, + Ay Adby A+ Ndby_y AdT + E,,.

(4.7) Remark. As noticed in lemma (3.3), under the natural homomorphism
QFM[X2] e QN(p)

(p € N[X] an irreducible polynomial), the operation ul? behaves well, i.e.,
ul? =7 is contained in dQpM[X?2] provided the computations are done with
respect to the 2-basis indicated there. In what follows we will frequently
reduce modulo p expressions of the form u/? + dv and then we will lift back
to QpM[X?]. By the above remark, the differential form dv will eventually
change, but this will be of no importance for further computations. Because
of this reason we will not explicitely mention these changes.

Our next goal is to study the forms E, € QrM[X?]. To this end we will

distinguish three types of monic irreducible polynomials in N[X], namely
a) p & M[X? and dby A -+ Adby_y AdT # 0 in Q)
b) p € M[X?] and dby A -+ Adbs_1 AdT # 0 in Q)
c) dby A--- ANdbs_y ANdT =0 in Q).
Case (a): We can write (see (4.6))
a? a o dv A

+—+—+W/\dbl/\~-/\dbs—1/\dT

Ep = p4r p27‘ p47‘
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with integral forms @, v, A € QEM[XQ] , and r > 0. For the time being, let
us write u, v, A instead of 4,0, \. Then in QpM|[X?] we get

(4.8) P E, = u® + pu 4 dv+ AAdby A--- Adbgy AdT.

Next we show that the form F, can be absorbed by the first sum u([)z] +
ug+dvg+AANdby A+ Adbs_1 AdT in (4.5). Of course we can assume r > 1
in (4.8). Taking (4.8) modulo p we obtain in Q)

(4.9) uP 4 dv+ AXAdby A - Adby_y AT = 0.
Since p &€ M[X?], lemma (3.4) (b) implies
u=0ANdby A---ANdbs_y NdT + p*uy
in QpM[X?]. Inserting this expression in (4.8) we get
(4.10) PV E, = pul + p"2u 4 dv+ ANdby A Adby_y AdT

with some new forms v and A € QpM|[X?]. Tt follows dv = AAdby A --- A
dbs—1 A dT" in Q) and lemma (3.5) implies

dv =06, Adby A+~ Ndbs_y N dT + p*du,
in QrM|[X?]. Thus (4.10) reads now
Y E, = p*ul? + p? 2y + pPdvy + 8 Adby A -+ Adbe_y AdT
and hence in Qy(,) we have
8 ANdby N -+ Ndbs_y ANdT = 0.
From (3.6) (b) we conclude
8 ANdby A+~ ANdbs_y ANdT = p*8”" ANdby A--- Adbs_y AdT

with §” € QpM[X?], since dby A -+ Adbs_y AdT # 0 in Q. In this case
we get

p"E, = p4u[12] + ¥ 20y + pPduy + p?" ANdby A -+ Adbs_y AdT
p 2B, = prul® 4+ p7uy + doy + 6" Adby A+ Adby_y AdT.
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Again one obtains in )
dvy = 8" Ndby N\ --- Ndbg_y AN dT

and it follows dvy; = 6" Adby A+ - - Adbs_y AdT + p?dvs with 8", vy € QpM[X?].
Repeating the last argument we finally obtain a relation

p " E, = ul + p?2uy 4 dvy + M Adby A - Adby_y AdT
in QpM[X?], ie.

A
p%_?) + d(pjf_4) + p4rl_4 ANdby A -+ ANdbg_y NdT.

Uy

Ep:@(

Thus we have reduced the number r by one in (4.8). Iterating this process
we finally arrive at a relation with r = 0, i.e.

E, = p(ug) + dvy, + Ay Adby A -+~ Ndbs—y AN dT

with uf, vy, Ny € QpM[X?]. This expression can be absorbed by the first
integral part of (4.5) and hence we have eliminated E, from this sum.

Case (b): Thus we assume p € M[X?] and dby A --- Adb,_y AdT # 0 in
Qn(p). We can write

(2] d A
Ep:u2 +£+TU+TAdb1AAdbS,1AdT
p* pr pr p¥

with some integer » > 1. Thus
(4.11) P Ey=ud fpru+dv+ AANdby Ao Adbyy AdT
with some forms u,v, A € QpM[X?]. In Qn(,) we get
0=u? +dv+AXAdby A--- ANdbs_y NdT.
From lemma (3.4) (a) we conclude
u=0ANdby \---Ndbs_1 NdT + pui + us A dp

with (5, U, U € QFM[X2]
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We insert now this expression in £, and obtain

p"E, = (GAdbyA---ANdbyy NAT)H +p s Adby A -+ ANdby_y AdT

2l pul A dp + p g + prus Adp

+dv+)\/\db1/\/\dbs_1/\dT
= p2u[12] + pug] Adp+p uy + plug Adp
+dv+ N Adby A -+ Ndbg_y NdT

with N = X\ + p"d + &', where ¢’ is some form in QpM[X?] with (6 A dby A
o Adbs_y NdT)B =& Ndby A -+ Adbs_y AdT. Thus in Q) it holds

dv =N Ndby N---ANdbs_1 NdT
and lemma (3.5) implies
dv=MN Ndby N---Ndbs_1 NdT + d(pvy + vy A dp)
with N, v1, vy € Qr M[X?]. Therefore
PPE, = prul +pul) Adp+pTus Adp +p
+pdvs +v3 Adp+ N" ANdby A+ Ndbg_y A dT

where vz = v + dvy and X" is some form in QrM|[X?]. Taking this equation
modulo p we obtain A" Adby A -+ Adbs_y ANdT = 0 in Qp(p). Since dby A
<+ ANdbs—y AdT # 0 in Qpyp), we obtain from lemma (3.6) (a)

N'"Ndby A+~ Ndbs_y NdT = (pA1 + g Adp) Adby A -+~ Adbs_y ANdT
with A\, Ay € QpM[X?]. Therefore

p[pQTflEp_i_pu?] + (u[;] +pr71u2> A dp

+pru1 + dvg + )\1 VAN dbl VANEIERIVAN dbs_l VAN dT)]
= (v3+ A Adby A---Ndbs_y ANdT') A dp.

Lemma (3.4) implies

U3+)\2/\db1/\"'/\db3_1/\dT:pU4+U5/\dp

43



with vy, v5 € Qp M[X?]. Tt follows

" 'E, + pu[f] + u[22] ANdp+p " rus Adp + plug
+ pdv4—|—d’05/\dp—|—)\3/\db1/\--~/\dbs,1/\dT:0

where A3 = Ay + d)y. We get again in Q)
)\3/\db1/\"'/\db571/\dT:0

and (3.6) (a) implies A3 Adby A+ Adbs_y ANdT = (pAg+ A5 Adp) Adby A - -+ A
dbs_1 A dT in QpM[X?]. Inserting this expression in the above equation we
obtain

(4.12)
P 2E, + ul 4ty 4+ A Adby A Adb_y AdT + duvy]
= (W 4 p Ly + dvs + As Adby A -+ Adbs_y AdT) A dp
in QrM[X?]. Lemma (3.4) implies
ul £ gy 4 dvs 4+ As Adby A -+ Adby_y AdT =0

in Q N(p)-
We consider now two cases.

Case 1. r > 1. Then it holds in Qyy),
Wl 4 dvs + As Adby A Adby_y AdT =0
and we can apply (3.4) (a) to obtain
s = Mg Adby A~ Adby_y AdT + pus + ug A dp

in QpM[X?]. Inserting this value of u, in the above equation and using a
similar argument as in case (a) we easily see that the exponent of p in (4.10)
can be lowered. Therefore we are led to consider the next case.

Case 2. r = 1. Then we have Qy ),

2]

uZ + us + dvos + As Adby A+ Adby_y AdT = 0.
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For the time being we will set ws = dby A --- A dbs_1 AdT. From lemma
(3.8) we conclude

Uy = Z/\gijdfij + pug + ug Adp + 0 N\ w,
(]
with fi;, 055 € M[X?], us,us,d € QprM[X?] as indicated by the lemma.
Therefore the right hand side of the equation (4.12) reads now

S Ao 2+ 30 Aok P!

+ p ug]+pu3+dv5+)\o Aws| A dp

with certain form Ay € QpM[X?].
Since g¢;;f;; = 1( mod p), it follows Hj 9ijfij = 1+ ph; with some
h; € M[X?] for all i. Thus (4.12) implies

dz dzm
plE, + ul 4w+ A A w, + dog] = Z hi J{l ~--/\J{—)m
1l im
d’L dlm
+ Z hi }fl » J{ + p(pus) + dvs + Ao A ws] A dp.
il im

But one easily sees that

p(puz) Ndp = pp(us A dp)

le fzm le fim

( mod dQpM[X?]).
We bring both terms to the left side of the above equation and we get

da
le 4 fzm

+ /\4 A ws + dvyg] = [dvs + Ao A ws] A dp.

medfﬂ 3 dfm]Adp _ p@[dp/\zhdfu o p i

A dp)

plE, + p(ur +us Adp + Zh

Thus
dle . dfzm
le fzm

d d
+d(vg +v5 A f) + M+ XA ?p) A ws.

E, = p(u1+U3/\dp+Zh A dp)

45



Notice that uy +us Adp+>_. h; ‘i{?ll /AR, ‘?—m A dp contains denominators

all of whose prime factors in M[X?] (and in ]TCT[X |) are of degree < deg(p).
The other involved forms have at most p in the denominator. Using a similar

argument as done at the beginning of this section we get

E, = p(ug) + dv, + Ay Aws + G, + Z G,

q deg(q) <deg(p)
with uf, vy, Ny € QrM[X?] and integral forms G, G, of the type

G, = dv,+ X\ AN ws
Gy = plug) + dvg+ Ag A w,
where v, A, € S QpM[X?] and ug, vg, Ay € ¢~*Qr M[X?] if deg(q) < deg(p).
Since the forms G, have denominators of degree < deg(p) and are of the

same type as I, we can add them to the E,’s, so that we forget then now.
Let us consider G. Let us write

/ /

Up = P, )\p = E with UI,)\/ S QFM[X2]

Thus G, = i—g/ + ’% A ws and hence
P*Gp = dv' + pA A w,

holds in QpM[X?]. Thus dv’ = 0 in Q). Using Cartier’s theorem (see [ Cal
or section 1) we can write v’ = AP + dB in Qy(,). Since v € QpM[X?] =
Image of QpM[X? in Qp(,), we easily see that B also can be chosen in
QrM[X?]. Therefore in QpM|[X?] (see (3.2))

v' = A® +dB + pv; + v, Adp

with vy, ve € QpM[X?]. Tt follows dv' = d(pvy + v A dp) = d(p(vy + duvg)) =
d(pv}) where v} = vy + dvs. Therefore in QpM[X?]

plpG, + dvy + A A ws] = vy Adp

Lemma (3.4) implies v] = pvy + v3 A dp in QpM[X?] and hence after
replacing v in the above equation it follows

pGp = pdvy + dvs A\ dp + A N\ w;.
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Thus A w, = 01in Qx,). Lemma (3.6) implies AAw, = (pA1+A2Adp) Aw,
in QpM[X?] and therefore

pGp = pdvy + dvs A\ dp + pAy A ws + Ao A dp A wy

plGp + dva + M A ws| = (dvs + Ao A ws) A dp.

We apply again (3.4) and obtain dvs + A A ws = pvg +vs A dp in Qp M[X?].
Hence in Qyy it holds dvs = Ay A ws. Applying (3.5) we obtain dvy =
d AN ws + d(pvg + v7 A dp). This implies

plGp + dvs + M A wg] = pdvg Adp + &' A wg A dp
with 6’ = Ay + 4. Lemma (3.4) implies &' A wys = pAs + Ay A dp in Q,M[X?].
Hence 6’ AwsAdp = pAsAdp. But we are assuming that wy # 0in Q). Thus

we easily conclude that there exist some \; € QpM[X?] with &' A ws A dp =
pA; A ws A dp. Inserting this in the above relation we get

plGp + dvs + M A ws] = pdvg A dp + pNs A ws A dp

Gp:d(vg+UGAdp)+()\1+)\§/\dp)/\w5

in QpM[X?]. Thus we also get rid of G,, in the equation for E,,.

Case (c). We assume db; A --- Adbs_1 AdT = 0 in Q). Thus we assume
now p € M[X?]. In QrM[X?] we can write

(4.13) "B, = u? + phu+ dv + A A w,

with o > 1, with u,v, A\ € QpM[X?] and ws, = dby A --- Adbs_y AN dT. We
claim that there is t € M[X?] | degy t < degy p with

(4.14) t2p?h 2B, = W' tph N+ o'+ N A w,

with v/, v/, N € Qp M[X?].

From (4.13) it is clear that we have reduced the exponent of p in the
denominators of E), at the cost that we increase the number of terms of
type E, but with degy(¢) < degy(p). Hence, iterating this process and
using partial fractions decompositions, we can finally eliminate E, from the
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original equation (4.5). Of course we have during this process to modify the
other terms E, for irreducibles ¢ with degy(q) < degx(p).
The assumption wy = dby A+ - Adbs_y AdT = 0 in Qpp) implies (see (3.7)

(¢))
ws = dby A\ -+ Ndbs_y A d(pt)
or
wy =dby A~ ANdbi_y Ad(pt) Adbigy A--- Adby_y AdT

with ¢t € M[X?], degyt < degy p, and some i, 1 < i < s — 1. Let us write
wy = w,_1 Ad(pt) where w,_; denotes dby A--- Adbg_y or dby A--- AT A~ A
dbs_y A dT'. We will assume wy_; # 0 in (), and we will omit the proof
in the case ws_1; = 0, which can be treated similarly. Since we can assume
h > 1, we get from (4.13)

u? 4 dv =0

in Qny. It follows u = 0 in Qy(, and hence u = pu; + up A dp with
uy, ug € QpM[X?] (see (3.2)). Then
B, = p*ul? + pul A dp + p" g + pPug A dp 4 do + A A w,.

This implies dv = 0 in Qy(,) and hence dv = d(pv,) with some v, €
QpM[X?] (see proof of case (2) above). Replacing this value of dv in the
above equation it follows

PP E, + pu[f} + u[;] A dp + puy + p"lus A dp

+dvy + AN ws_ 1 Adt] = (v1 + tA A ws_1) A dp.
Lemma (3.4) implies
v = tA AN ws_1 + puo +v3 Adp
with vy, v3 € QpM[X?]. Thus

p[p2h_2Ep + u[f} + ph_lul + dvg] =

tAA A wyy + [ul + p"Luy + dus] A dp.
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Hence
tdA ANws_1 =0
in Qn(p). Since degy t < degy p, it follows ¢ # 0 in N(p) and we get
dX N ws_1 = 0.
This implies d\ A w,_1 = d(pA\1) A w,_1 in Qp[X?]. Therefore

p[pzh’zEp + u[f] + p" My + dvy + tdhy A we_y]
= [u[zﬂ + p" Mg + dug + A A we_y] Adp.

Lemma (3.4) implies
(4.15) u[22] + " Mg + dvg = th A ws_y

in Q). Thus we are led to consider two cases

a) h > 1. Then
u[;] + dvg = tA\] ANwg_q
implies (see (3.4))
Uy = 0 N ws_1 + pug + ug A dp

with 6, u3, uy € QpM[X?]. Inserting this expression for us in the equation
for E,, we obtain

p[p%’QEp + u[lz} + p" Yy + dvog 4+ td A we_q + pug} Adp +p"rug A dp|

=1[(0 A ws_l)p] + " A we_y + dus + A A we_y1] A dp.
It follows
(6 Awe—1)® + dvs + th A weoy € ker[QFM[X?] — Q)]
which means that

dvs = 2 AN ws_q1 + pug + us A dp
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in Q@M|[X?]. This relation says dvs € Qﬁ@;ﬂ A Ws_1.

We apply now lemma (1.13) and remark (1.14), and we obtain in Q7% M [X?]

dvy = (Z bz, + b%lB) AN wsy + d(pug + us A dp)
p#L

with z,, B € QpM[X?],dz, = 0 for all y1. Notice that the form (3, 0z, +
b'dB) A ws_1 is exact, i.e. equal to some dH with H € QrM[X?]. Inserting
this in the above equation it follows

plp? 2B, + ull + p" My + duy + tdA g A we_y + (pul) + " us + duy) A dp)

= [0 Awe))P + p" 16 A wy_y + A Aw,_y + dH] A dp.

Let us denote by A the expression inside the parenthesis of the right
hand side of this equation, which is of the form A = B A w,_1, with some
B € QpM[X?]. The equation p[ | = B A ws_;1 A dp implies by lemma (3.4)
B Nws—1 =0 in Qp(p. Now we apply lemma (3.6) to conclude B A w,_; =
(pp1 + p2 Adp) Aw,_y in QpM[X?]. Inserting in the above relation we obtain
then that we can assume B A w, 1 = puy A w,_1 with gy € QpM|[X?]. Thus
let us write pB A w,_1 instead of B A w,_;. Multiplying the above equation
by t and using tdp = d(pt) + pdt as well as ws_1 A d(pt) = ws, we get

p2h_2Ep + u[f} + p" Yy + dvog + td A ws_q + (pu;[f] + phtug + duy) A dp

AN dt BN w,_ dt B
_P +p v 1:A/\——i——/\ws_l.
pt pt t t

This equation implies
Uy U3/\dp UQ+U2Adp
By = ¢ (ph—l) + @( P ) +d< P20=1)

ONwey At o H ot
ol M) T\ ey My

tdA A ws_1 +tA Aws_q AL 1
+ p2h—2 p2h—2t

B A w,.
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Notice td\; A ws_1 + A\ A wg_1 Adt = d(tA; A ws_1), so that

( o uz A dp 6/\w31/\dt)

L, = ph1 ph1 1t

p

d Vg + Uy VAN dp (t/\l) VAN Ws—1 HAdt
+ p2h—2 p2h—2 p2h—2t

B
+pQT_2t VAN Wgs.

u’ v N
E,=p (ph1t> +d (p2(h1)t) + tp?h=2 A ws

Thus

with forms o/, v/, N € Qr M[X?]. Using partial fraction decomposition of the
forms u'/(p"~'t), v’/ (p**"=Vt), X' /(p*"~2t), we see that the exponent h of p in
equation (4.13) can be reduced by one, although expressions for polynomials
q of lower degree of the same type can appear, which will be absorbed by the

corresponding F,. Thus we are led to consider the case
(b) h = 1. Then we have (see (4.15))
(416) U[QQ] + ug + d’U3 = t)\l A Ws—1

in Qn@. We can now apply lemma (3.7) to conclude

Uy = Z/\gijdfij +pvr+ vy Adp+ 0 ANws_q

o)

with Ul,U2,5 - QFM[XQ], fijugij - M[XQ], degX fij < degXp, fijgij =
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1+ hijp in M[X?]. Next we compute p(>_, /\.gijdfij). We have

du dw
Q(Z/\gz]dfm) = [Z/\gzgfz] f +Z/\ zyfzg f

Z H gisfi)? + Hgl]f” /\ C,%j
> (Tt + TLow) At

Z Hgij(l + H(1 + phij)) /\dfij
Sl A

mod dQpM[X?], with certain h; € M[X?]. Thus we have obtained

@(Z /\gijdfij) = ngi /\ dfi; mod  dQpM[X?]
i i J

with g; € M[X?]. Let us insert uy in (4.15). According to the above compu-
tation we obtain in QpM[X?]

(0 Nws_q) + dug + tA AN ws_1 = puy + us A dp
and this implies
d’Ug =AA Wg_1

in Qp ), with some form X € QpM[X? C Qy(y). From lemma (1.13) and
remark (1.14) we obtain in QpM[X?]

dvs = <Z W'z, + bldB> A ws_1 + d(puy)

pF#l
with 2, B € QpM[X?],dz, = 0 for all 4. Notice that the form (37, 0z, +
b'dB) A ws_; is exact, i.e. equal to some dH with H € QrM[X?]. Therefore

PlE, + pur +dvy +  tdMy Aw,_i] Z /\gzjdfzj pu1L + 8 Awy_y) +

(Z W'z, + bldB> A ws_1 + d(puy) + tAy A ws_1] A dp.
p#l
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After dividing by p, we are led to consider the following expressions.

a) p(pvr) A %p = p(pvy A %p) = p(v1 A dp) mod  dQpM[X?]
b)

d dzg
@Z/\gijdfijA?p = @(Z/\gufm J{; A )
(S smtent)
- o(TAE AL A )
ij

- (Z H; /\ ‘i{” A dp) mod dQpM[X?]

with certain polynomials H; € M[X 2].

¢) p(dAws_1)A dp = p(0Aw,_ 1/\dt)+p(5/\ws 1/\d(pt)) mod dQpM[X?

d) t>\1/\ws 1/\ p = )\1/\11)5_1/\% :AlAws_lAW :t)\l/\ws_l/\
d(tp + M Aws g Adt (recall wy = w,_1 Ad(pt))

e) (Zu# b“zu + bldB> /\ws_l/\% = (ZM# b”zu + bldB> /\ws—1/\%+
(ZM# bz, + bldB> A We_q A @

Thus we get
E, = p(u +vi Adp) + d(ve + ug Aws_y Adp)

+¢ ZH/\ f” Adp) + d(tA N ws_q)

dt d(pt) A
+o(d ANws_1) A n + o(d ANws_1) A % + ?1 A Wy

If i dt
E, = (ul—i—vl/\dp—l—ZH/\fU /\dp—l—é/\wsl/\t
+d<U2 +ug N wg_q1 N dp + t)\l N w371> + a3 N\ wq
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where p(d A ws_1) A % + % AN ws = ag A ws, ag being a form of the type

u/pt with € QpM[X?], i.e. a3 has a denominator containing p at most
in the first power, and all other prime factors are of degree (in X) less than
deg(p). Thus we have

E, = p(a1) + d(ag) + as A ws

where ay, s have numerator in QM |[X?] and denominators with prime fac-
tors of degree less than deg(p). In particular the above equation shows that
as A\ wg is also a form of the type 3/q where ¢ is a product of prime polyno-
mials of degree less than p in M[X?]. We claim

(4.17) o3 N\ ws = o N\ W,

where « is a form of the type v/q where ¢ is a product of irreducible poly-
nomials of degree < deg(p) contained in M[X?]. Once we have shown this
claim, we see that we can get rid of E, in the equation (4.5). Thus we must
show (after scaling (4.16) with a convenient polynomial q).

(4.18) Lemma. Let X\ be a form in %QFM[X2] such that A\\w, € QrM|[X?].
Then there is some form N € QpM[X?] with
AN ws = N A ws.

Proof. Set A = p~!\g with \g € QrM[X?]. We can obviously assume that
degy Ao < degy p. We write dT' = kydbs+dT", with degy ks = 2, deg 1" =0
and dT" not containing db,. Since wy, = dby A---Adbs_1 ANdT, we may assume
that ¢ is only generated by forms db;,j > s. Set A\g = Ay A dbs + X, with
As, A generated by forms db;,j > s. Then

AN ws = p NgAdby A~ Adbg_1 A (ksdbs + dT")
= ptdby A Adbey Adbg A (Mg AdT + K \L)
+ptdby Ao Adbg_y AN, AT,

Because of the above choices, both summands do not interfere with each
other, so that both must be integral, since A A w; is integral. In particular

ptdby Ao Adbey AN, AT € QpM[X?].
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Since degy A, < degy p and degy 1" = 0, it follows
dby N+~ ANdbs_ 1 AN, NdAT" = 0.

But X, AdT" is generated only by differentials db;, j > s, so that we obtain
N AdT" = 0. Tt follows N, = § A dT" with some form § € QpM[X?], and

degy 0 < degy p. Therefore

A ws = ptdby A+ Adbs A (A AT + k6 A dT')

= pldby A Adbg A (N + k0) A dT

Since dby A --- A dbs A dT" does not contain X we easily see that p divides
As + ks ie. Ay + k0 =p-p with p € Qp M[X?]. Hence

Mo = (ksd+pp) Adbs+ 0 ANdT’

= OANdT + pu A dbs.
This implies

AMws = p A Adby A--- Adbs_y ANdT
= plpuAdbgNdby A ANdby_y AdT
= pAws
with p € QrM[X?]. This proves the claim. O

Therefore, using this descent procedure we have shown the following re-
sult.

(4.19) Proposition. If w € Q} satisfies an equation
w=gpu+do+AXANdby N--- Ndbs_y NdT
with w,v,\ € QpM(X?) and T as before, then w satisfies an equation

w=pu +dv'+NANdby A---Ndbs_y NdT
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with u',v', N € Qp M[X?].

(4.20) Lemma. Let w € Q% be such that there exist u,v, N € QpM|[X?] with
w=gpu+dv+AANdby A+ ANdby y ANdT, T =0,X>+T', degx T' = 0. Then
there exist u',v', N € QpM with

w=pu +dv +NANdby A---Ndbs_y AN dbs \NdT".
Proof. Set degy u = 2h, degy v = 2k, degy A = 2¢. We consider the follow-

ing cases:

a) 4h > 2k. Then the coefficient of X4 in pu + dv + A\ A w, (ws =
dby A -+ Adby_y AdT ) is the form ul) + dugy, + Agp_s A we_y A db,, where
We_1 = db; A -+ ANdbs_1. Then we must have

u[;l + d’U4h + )\4]1,2 A Ws—1 A dbs =0

if h > 1. Here we have used the following notation: u = wuy + us X? 4 - - - +
uop X 2", with u; € QpM. Then applying the Cartier operator

0= Ugp + C()\4h,2 Nws_1 N dbs)
From lemma (1.12) we obtain in Qp(x,)
Ugp = N\ w1 A dbs.

Since ug, € QpM, it is easy to conclude that we can choose u € QpM.
Therefore

U o= g4 us X%+ 4 ug XN
= u0+---+p/\w5_1/\dbsX2h
= ug+ -+ pAwey A(dT +dT) X2
= wug+ - Fuhy X4 p X2 Aw,  AdT
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where uh, 5 = ugp_o + pu AdT’. The term pX?"2 Aw,_; AdT can be added
to AAs,_1 AdT replacing A by A+ pX?"=2. Thus we have lowered the degree
of u. Iterating this procedure we are led to consider the following case

b) 4h < 2k. It follows 2¢ < 2k — 2, and the coefficient of X2* is dvgy, +
Aog—2 AN ws_1 N dbs. Therefore if k£ > 1, we must have

dvar, + Aop—a A we_1 A dbs = 0.

Then according (1.13) there exist forms z, € QpM and B € QM such that

vk = Y [V"(2u2 + bszus) + 07 (21 + bedB)] Aw,_y A dby

pFELs—1

with all z, closed, and z,2, 2,3, 21, B not containing b, in the 2-expansion
of their coefficients. The term b*z,9 A ws—1 is exact for all p # 1,4 ie.
W20 ANws—q € dQQp M. Also byb* ANws_q € bydQpM. The form b's—1z; Aws_4
is closed and hence contained in dQpM + (QpM)!? and bb'*—1dB A w,_, €
bsd2p M.
Putting all this together, we obtain
dvoy, = (AP + dC + b,dE) A db,
with forms A, C, E € Qr M, which moreover are multiples of w,_;. From
Aok—o A wy_y A dby = (AP +dC + bdE) A db,
we infer

Moo Awy_q = AP +dC + b, dE + F A db,

with some F' € QrM, which can be chosen as a multiple of w,_;, since F
does not have terms containing dbs and F' A dbs € (ws_1). Therefore

AN Wg—1 = ()\0 + )\2X2 + -+ /\zk_QXQk_Q) A Ws—1
AN we_ i AdT = Mg+ X X?+ -+ A s XF D Awe_y AdT

+X%#-2(AP £ dC + bydE + F A db,) A dT.
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The terms X224 A dT and X?-2dC A dT are exact, and hence can be
absorbed by dv without increasing the degree of v. Now

X*2p dENAT = X*4X?b,)dE A dT
= X* YT +T)dE NdT

= d(X*ATE NdT) + X***T'dE N dT.

The first summand can be added to dv without increasing the degree of
v. Since dFE is a multiple of w,_1, it follows that the second summand in this
expression is contained in X?*~*QpM Aw,_; AdT and hence it can be added
to the term Agj_4 - X2*~* of degree 2k — 4 in A Aw,_; AdT. Finally the term
X*2FANdbg NdT = X?*~4F AdT' ANdT is contained in X2 4QpM Aws_q A
dT' = X% 4QpM A w,, because F' is a multiple of w,_;, and therefore this
term is absorbed by the term of degree 2k — 4 in A\ A w;.

This shows that can assume deg A < 2k — 4. But this implies dvy, = 0,
i.e. degv < 2k. Thus we have lowered the degree of v, and iterating this
procedure we come again to the case a).

Combining the procedures of cases a) and b) we finally arrive at an equa-
tion

w=ul+u+dv+AANws_y ANdT
with u,v, A € QpM. Since AMws_1 AdT = X2AAws_i Adbg+ANw,_1 AdT", we
see that X2 AAw,_1Adb, € QM , and this is possible only if AAw,_; Adb, = 0.

We have assumed that A does not contain terms with dby, ... ,dbs_1, so that
it followsA = M A db, in QzM. Thus

w=gpu+dv+NAdby A---ANdb; NdT
and this proves the lemma. [

We are now ready to prove the main result of this paper.

Proof of Theorem (4.1) Let us introduce the following subfields of L =
F(X,|p € S,) and polynomials
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Ly = L=F(X,|p€S,)
T, = T=> VX,
HESH

My = M=F(X;|peS,)

Ly = F(X,u‘:u%el)uelz(laoa"' 70)

T, = ) VX,

p#el

My = F(Xj|u#e)

Lj = F(XM|/L7£€1,...76]'),61‘:(0,...1,...,0)
n- ¥ ok

HFEEl,... &5
Mj = F(Xi|lu7é€1,...,€j)

where j = 1,2,... ,n. We have Lj—l = Lj(Xj)77}+1 = 1}+bj+1XJZ+1 S Mj+1-

Thus equation (4.2) corresponds to (4.3) with s =1, i.e. w = pu+ dv +
ANdTy with w € Qp, u,v, A\ € QpM,. The above process implies an equation
w = pu +dv'+ N A dTy with o/, 0", N € QpM;[X7]. Lemma (4.19) implies
now

w = pu" +dv" + X" ANdby A\ dT}

with u”, 0", \" € QpM,;. We continue with this process for s =2,... ,n —1
until we get forms u, v, A\ € Qr M, _; such that

w=@u+do+AXANdby A~ Ndbp_y NdT,_;.
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But we have
dby N -+ Ndby,—y NdT,,—1 =dby A -+ Ndby—1 A kypdby,
where k, = b," 3, "X Therefore we obtain an equation
(4.21) w = pii+do+ N Adby A--- Adb,

in QpM,_1. We can now get rid of the remaining variables just by comparing
coefficients. Suppose namely that k is a field, K = k(X) a pure transcen-
dental extension in one variable of k,w € €); and that there is a relation

(4.22) w = pu+dv+ AN\ w,

in Qx(X?), where w, is now defined over k. We decompose u, v, A in partial
fractions

A= A+ N

with ug, vo, Ao € Q[X?], up, vy, Ay € P~ [X?]. Since the operators o and
d respect these decomposition, we conclude from (4.21) that

w:pUO—i‘dUo—F)\o/\dbl/\"'/\dbn

in Q[X?]. Letting X = 0, we obtain w = iig + dvig + Ag A dby A - - - Adb,, in
Q. Applying this argument to the equation (4.21) we conclude

w=pa+dE+yANdby \---Ndb,

with «, 8, € Qp. This finishes the proof of the theorem. [J
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5 Quadratic forms and differential forms

We review briefly in this section for the sake of completeness some basic nota-
tions and results from quadratic form theory and its relations with differential
forms over fields of characteristic two. Our basic references will be [ A-Ba 1],
[ Ba 1], [ Ka 1] and [ Sa]. Let F' be a field of characteristic two. We denote
by [a, b] the binary nonsingular quadratic form az?+zy+by? (a,b € F). Any
non singular quadratic form over F' is of the form L, [a;, b, (a;,b; € F),
where L means orthogonal sum. The form [0, 0] is the hyperbolic plane and
any orthogonal sum L [0, 0] is called a hyperbolic space. Two quadratic forms
¢1, g2 are called equivalent (¢ ~ ¢o) if Hy L q1 ~ Hy L qo, where Hy, Hy are
hyperbolic spaces. A form ¢ is called isotropic if there is a nonzero vector
x with ¢(x) = 0, otherwise ¢ is called anisotropic. The set of equivalence
classes of anisotropic quadratic forms over F form the Witt-group W, (F)
(with respect to orthogonal sums). Respectively, we denote by (a) the one
dimensional symmetric bilinear form axy (a € F*) and by (a4, ... ,a,) the
orthogonal sum (a;) L ... L (a,). Let W(F) be the Witt ring of F, i.c.
the ring of classes of non singular symmetric bilinear forms over F. Then
W,(F) is a W(F)-module via the operation b ® ¢(z ® y) = b(x,x) - q(y)
(see [ Ba 1], [ Sa]). The maximal ideal I C W(F) of even dimensional bi-
linear forms is additively generated by the 1-Pfister forms (1,a), a € F*,
so that the n-power I" is additively generated by the n-fold Pfister forms
L ar,... a4, >=(l,a1) ®---® (1, a,). We get the submodules "W, (F') of
Wy (F), n > 0, which are additively generated by the quadratic n-fold Pfister
forms < ay, ... ,a,;b)] =< ay,... ,a, > ®[1,b] , where [1,b] = 22+ 2y + by?
is a 0-fold Pfister form. Thus we have the filtration W(F) > I D> I? D ---
and W, (F) D IW,(F) D I*W,(F) D ---. In [ Ka 1] it is shown that there
are a natural isomorphisms (see section 2 for the definition of vp(n) and
H™(F))

(5.1) a:vp(n) = IE/IE
(5.2) B H"WYF) 5 "W, (F) /T W, (F)
given on generators by

a(dx—”’ll/\.../\d;_:> = <21,...,2,> mod I"

ﬁ(b%/\---/\?—"> = L T1,...,2,;0]] mod I"W,(F).
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If L/F is any field extension, any quadratic form ¢ (or bilinear form b)
over F' can be viewed as a form over L, which we denote by ¢ ( or b).
The natural homomorphisms W, (F') — W,(L), resp. W (F) — W(L) are
compatible with the above isomorphisms, i.e.

vp(n) 2 IR/

l l

vp(n) =, Ip/Ipt
resp.

H"™H(F) = IW(F) /I HW(F)

| l

H™ L) =, IW(L)/ W, (L)

In particular the main isomorphism (4.1) can be restated in terms of
quadratic forms as follows.

(5.3) Theorem. Let ¢ =< by,... b, > be an anisotropic bilinear n-fold
Pfister form over F. Then

I"W,(F) I"W,(F(¢)) =
[ W, (F) - I”‘HWq(F(gb)) ={o®[1,b]|b € F}.

ker

Let p =< by,... ,b,;b]] be an anisotropic quadratic n -fold Pfister form
over F. Let F(p) be the function field of the quadric {p = 0} over F. In
| A-Ba 2] we have shown that (5.3) implies the following result, whose proof
will be given here for the sake of completeness.

(5.4) Theorem. Let p be as above. Then

PWAF) | PWFG) |
Y pew ) e Ee) |~ O
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Proof. Let ¢ € I"W,(F) be such that gr) € I""'W,(F(p)). Set
q = >.._, ¢i[l,a;], ¢ an n-fold bilinear Pfister form over F, 1 < i < r.
If r =1, 1ie. g = ¢[l,a], then the above assumption implies that ¢[1,al
is hyperbolic over F(p) (see [ Ba 2]) and then by the norm theorem ( see
[ Ba 3]) we conclude ¢[1,a] ~ p over F', i.e. ¢ = p. Now assume r > 1,
and we will prove the assertion by induction on r. Thus we assume the
assertion true for any field and any form of length less than r. Thus without
restriction ¢,[1,a,] is anisotropic. Set 1) = ¢,, and let F'(¢)) be its function
field. Then gpey) = S [, ai) € I"W,(F(v)) and over F(1)(p) we get

rw)m) € 1" Wo(F(@)(p))-
Therefore by induction we obtain

qr(w) = epr(w) mod "W (F(y))

with e = 0 or 1. Thus

(¢ L ep)rq € "Wy (F ().

From (5.1) we conclude ¢ L ep = ¢[1,c] mod I""'W,(F) with some
c € F. Since qp(py € 1" W, (F(p)), it follows ¥[1, c|p(py € 1" W, (F(p)), i.e.
¥[1, c] is hyperbolic over F(p), and hence by the norm theorem (see loc. cit.
) ¥[1,c] = np mod "MW, (F) with n = 0 or 1. Therefore ¢ = (¢ + n)p mod
I" W, (F). This conclude the proof. OJ

Using the isomorphism (5.2) we can restate the above result as follows.
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(5.5) Theorem. Let p =< by,... ,b,;b]] be an anisotropic quadratic n-fold
Pfister form over F. Then

H" Y (F(p)/F) = {o,b% A A %} :
1 n

(5.6) Remark. The analogue of (5.3) for bilinear forms is the following result

(5.7) Proposition. Let ¢ =< by,... ,b, > be an anisotropic bilinear n-fold
Pfister form. Then for m > n

rm Ig
ker mlj-l — f‘n(—fi = {ij—n<< T1y... yTp >>‘ZU1, ,ZBHGFQ(bl,... ,bn)}
Ie™ )

In the case m = n, we have

Iy I}
ker [[n—‘il — [Zﬁ)] = {1, &, >r1, ..., 20 € F2(b1, ... ,by)} .
F

F(¢)

We will show the special case m = n for simplicity.

If z1,...,2, € F?(by,... ,b,), then dx; € Fdb, @ - - - ® Fdb, and hence

dxy dr,  db db,,
ety N N .
with some a € F2(b1, S ,bn) Since a% A A % c ker(Q% N Q?’(d)))» it
dz dx,
follows <L A -+ A S € ker[v(n)r — v(n) ). Thus
d dz,, I 17
Lo S = ol A A e ker | O
o i e i)

— n I
Conversely take any ¢ = a(w) € ker [ﬂ{il — Ii(ﬂ)}, with w € ker[v(n)p —
F F(¢)

v(n)pg), ie. w = aft Ao A2 Using Kato’s lemma (see (2.15)) one
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immediately obtains w = 6%1/\. . '/\d;“"—" with zy,... , 2, € F?(by,... ,b,) and
this implies ¢ = K z1, ... , Ty >.

In particular, since this kernel is a group, we obtain

(5.8) Corollary. Given xq,... ,Tn, Y1, Yn € F2(b1,...,b,), then there
exist 21, ... , 2, € F?(by,... ,b,) with

LTy By D F LYy Yp D= 21,0, 2 > mod ]}}“

This corollary says that the field F?(by, ... ,b,) is n-linked relative to F.
In particular if {by, ... , by} is a 2-basis of the field F, i.e. F' = F%(by,... ,by),
then 7N ™ = 0 and it follows

IN ={<zy,...,on > |2; € F*}.
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6 Generic splitting of quadratic forms and
the degree conjecture

Since Knebusch’s seminal papers on generic splitting of quadratic forms over
fields of characteristic # 2 (see [ Kn 1], [ Kn 2]) appeared, few work has
been done on the subject (see [ Ar-Kn], [ F], ... ). In particular Knebusch’s
degree conjecture I = J,,, where J,, is the ideal of W (F') of forms of degree
> n remains still open. In what follows we will briefly develop the analog
of Knebusch’s theory over fields of characteristic 2 and using the results of
section 5 we will show that in this case the corresponding degree conjecture
is true.

Our main reference will be Knebusch’s paper [ Kn| on reduction theory of
quadratic and bilinear forms, which holds true for fields of any characteristic,
as well as his generic splitting papers cited above. Many of the definitions
and results of Knebusch’s theory can be extended (using [ Ba 2], [ Ba 3])
mutatis mutandis to the case 2 = 0, so that we will often refer to the above
papers for proofs.

From now on all fields have characteristic 2. The most basic notion in
this theory is that of generic zero field of a quadratic form ¢q over F'. A field
extension L/F is a generic zero field of ¢ if ¢y, is isotropic and if E/F' is any
extension with gg isotropic, then there exists a F' -place A : L — E'U o (see
[ La]). One easily checks that the function field F'(q) of ¢ is a generic field of
q. It g ={a)[1,b1] L -+ L {a,)[1,b,], then F(q) = F(x1,... ,Zn,Y1,--- ,Yn)
with the single relation > a;(@? + z;y; + biy?) = 0. Also the field F(q)o =
F(up, ... U 1,01, ,Un1,2) With an(22 + 2 + b,) + S0 as(u? + ugv; +
biv?) = 0 is a generic zero field of q. F(q)o is purely transcendental over F
if and only if ¢ is isotropic over F'. Starting with a non singular quadratic
form g over F' we can define a field tower FF = Fy C F} C --- C F} and
forms q¢ = qo, q1, - .. ,,qn defined over Fy, FY, ... , F}, respectively such that ¢,
is anisotropic over F,.,0 < r < h—1, g3 is hyperbolic over F},, and ¢,_1 ® F}. ~
qr L i, x [0,0] with some integer i,, F,. being a generic zero field of ¢,_; over
F,_1 . The sequence (F,q.,i,.,0 < r < h) is called a generic splitting tower
of q. Recall that two field extensions L;/F, Ly/F are called F-equivalent if
there exist F-places A\ : L1 — Ly U oo, Ay : Ly — L; Uoo. Then any field
L which is F-equivalent to F}, is called a generic splitting field of ¢ and any
field F-equivalent to Fj,_; is called a leading field of q. A generic splitting
tower of ¢ is essentially unique in the sense that if (F},q.,4,,0 < r < h),
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(Fl,q.,i,0 < s < h') are two generic splitting towers of ¢, then h = h’ |
i =1, 0 <r < h, Fyis equivalent with F}. The number h = h(q) is
called the height of g. Obviously any form (a)p, a € F* and p a Pfister form,
has height 1. Conversely if h(q) = 1, then gp(g is hyperbolic and the norm
theorem proved in [ Ba 2] implies immediately that ¢ ~ (a)p with a € F'* and
p a Pfister form. In particular for any form ¢, the form ¢, _; is similar to a n-
fold Pfister form over Fj,_;. The degree n of this form is uniquely determined
and we will call it the degree of ¢ and we denote it by deg(q). If ¢ is hyperbolic
we set deg(q) = oo. For any extension L/F we have deg(qr) > deg(q) and
deg is a well defined function on W, (F), deg : W, (F') — NU{oco}. We define
for any n > 0

(6.1) J(n) = {7 € W,(F)|deg(q) = n}.

One easily checks that J(0) = W,(F), J(1) = IW,(F), J(2) = I?W,(F)
(see [ Ba 1], [ A-Ba 1] ). First we show that J(n) is a W(F') submodule of
W,(F) and that I"W,(F) C J(n). The key fact is the following result (com-
pare [ Kn 1]).

(6.2) Proposition. Let ¢ = (a)p L ¢' be a quadratic form over F, where p
is an anisotropic Pfister form of degree n > 1, a € F* and deg(q’) > n + 1.
Let L be a leading field of q. Then

i) deg(q) = n
ii) pr is a leading form of q.

iii) If deg(q') > n + 2, then py, is anisotropic and qr, is Witt-equivalent to
(a)pr, with some a € L*.

Proof. We may assume that ¢ is not hyperbolic. We will show that
deg(q) = n. Let (L;,¢,,0 < i < e) be a generic splitting tower of ¢'.
Then py, is anisotropic. Otherwise pr. is hyperbolic and we can choose
0 < m < e maximal with py, anisotropic. Then p is hyperbolic over L,,(¢.,)
and the norm theorem (see [ Ba 2]) together with the sub form theorem (see
[ Ba 3]) show that (a)q,, is a sub form of py,, for some b € Lf,. In particular
deg(q’) = deg(q,) < n which is a contradiction. Thus py_ is anisotropic,
and therefore (a)py, is the kernel form of gr,. This shows deg(q) < n.
If deg(q) = m < n, let L be a leading field of ¢ with ker(q,) = (c)r,
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¢ € L* and r a m-fold Pfister form over L. Thus ¢; ~ (¢)r L (a)pr,
and since dim({c)r L {(a)py) = 2™ + 2" < 2"*1 it follows ¢} ~ 0 because
deg(q’) > n+ 1. Thus {(c)r ~ {(a)pr over L, and this implies p; hyperbolic
and hence 7 is hyperbolic, which is a contradiction. Thus deg(q) = n. The
rest of the proposition follows easily and we omit the proof. [

(6.3) Corollary. For any two forms qi,qs over F

deg(q1 L g2) > min{deg(q:),deg(q2)}

and if deg(q1) # deg(qa), the equality holds.

From these results we immediately obtain

(6.4) Theorem.
(i) J(n) is a W(F)-sub-module of W,(F)
(ii) I"W,(F) C J(n)

(i) I™J(n) C J(m+n).

Proof. (i) The above corollary shows that J(n) is subgroup of W,(F).
Since for any a € F*, deg((a)q) = deg(q), again the same corollary im-
plies deg({a1,... ,am)q) > deg(q) for any ai,...,a, € F* ie. J(n)is a
W (F')-submodule of W, (F). This shows (i). Since I"W,(F) is additively
generated by the n-fold Pfister forms < ay, ... ,ay,;a]] of degree n, (ii) fol-
lows from (i), (iii) is also an immediate corollary of (i). O

If F is a field of characteristic different from 2, then one of the major
conjectures of Knebusch’s generic splitting theory is the equality J, = I"™ in
W(F). In [ A-Ba 2] Theorem 1, we have shown that the equality I"W,(F) =
J(n) for any field F' is equivalent with the equality

ker[I"W, (F)/T" "Wy (F) — I"W,(F(p)) /1" W,(F (p))] = {0, p}

for any quadratic n-fold Pfister form p over F'. Now if I is a field of char-
acteristic 2, theorem (5.4) asserts that this equality is true. Thus combining
these results we have the following.
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(6.5) Main theorem. Let F' be a field of characteristic 2. Then for any
n>0

I"W,(F) = J(n).

(6.6) Remark. Of course (6.5) implies (6.4), but the above outlined proof
of (6.4) is much more elementary.
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