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Abstract

Let F be a field of characteristic 2. Let ΩnF be the F -space of absolute dif-
ferential forms over F . There is a homomorphism ℘ : ΩnF → ΩnF /dΩ

n−1
F

given by

℘(x
dx1
x1
∧ · · · ∧ dxn

xn
) = (x2 − x)

dx1
x1
∧ · · · ∧ dxn

xn
mod dΩn−1F

Let Hn+1(F ) = Coker(℘). We study the behavior of Hn+1(F ) under
the function field F (φ)/F , where φ =¿ b1, . . . , bn À is a n-fold Pfister
form and F (φ) is the function field of the quadric φ = 0 over F . We
show that

ker(Hn+1(F )→ Hn+1(F (φ)) = F · db1
b1
∧ · · · ∧ dbn

bn

Using Kato’s isomorphism of Hn+1(F ) with the quotient InWq(F )/
In+1Wq(F ), where Wq(F ) is the Witt group of quadratic forms over
F and I ⊂ W (F ) the maximal ideal of even dimensional bilinear forms
over F , we deduce from the above result the analogue in characteristic
2 of Knebusch’s degree conjecture, i.e. InWq(F ) is the set of all classes
q with deg(q) ≥ n.
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Introduction

Since Knebusch’s seminal papers on generic splitting of quadratic forms ap-
peared (see [ Kn 1], [ Kn 2]), few work until recently has been done on his
degree conjecture, which asserts that the n-th power In of the ideal I of even
dimensional forms in the Witt-ring W (F ) of symmetric non singular bilinear
forms of a field F with 2 6= 0, coincides with the ideal of forms of degree ≥ n.
Compare [ Kn 1], [ Ar-Kn], the 1998-preprint [ OVV] and [ A-Ba 2]. A simi-
lar theory of generic splitting of quadratic forms over a field of characteristic
2 can be developed (see section 6 of this work) and the corresponding degree
conjecture can be stated. The aim of this work is to prove this analogue of
Knebusch’s conjecture for fields with 2=0.

The advantage of working with fields of characteristic 2 is the fact dis-
covered by K. Kato (see [ Ka 1]), that there is a strong relationship between
quadratic forms and differential forms defined over such fields (see section 5
of this work). Thus many problems concerning quadratic forms in charac-
teristic 2 can be translated into the language of differential forms, which are
sometimes easier to handle, in particular choosing a suitable 2-basis of the
ground field. Let us briefly recall Kato’s above mentioned correspondence.
Let F be a field of characteristic 2 and let Ωn

F be the space of n-differential
forms over F (see [ Ca], [ Groth]). Let d : Ωn−1

F → Ωn
F be the usual differ-

ential operator which extends d : F → Ω1F , a 7→ da. Then there is a well
defined homomorphism ℘ : Ωn

F → Ωn
F/dΩ

n−1
F given by

℘(x
dx1
x1
∧ · · · ∧ dxn

xn
) = (x2 − x)dx1

x1
∧ · · · ∧ dxn

xn
mod dΩn−1

F

(see [ Ka 1], [ Mi] or section 1 of this paper).
Choosing a 2-basis of F one can easily lift ℘ to a homomorphism ℘ :

Ωn
F → Ωn

F which of course depends on the 2-basis ( see section 1). Let
νF (n) = ker(℘) and Hn+1(F ) = Coker(℘), so that there is a exact sequence

0→ νF (n)→ Ωn
F → Ωn

F/dΩ
n−1
F → Hn+1(F )→ 0.

In [ Ka 1] it is shown that there exists a natural isomorphism of groups

Hn+1(F )
∼→ InWq(F )/I

n+1Wq(F )

given by

b
ba1
a1
∧ · · · ∧ dan

an
7→ ¿ a1, . . . , an; b]].
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Here Wq(F ) denotes the W (F )-module of non singular quadratic forms over
F and ¿ a1, . . . , an; b]] denotes the quadratic n-fold Pfister form defined by
a1, . . . , an ∈ F ∗, b ∈ F (see [ Ka 1], [ A-Ba 1] or section 5 of this work).

The generic splitting theory developed in section 6 enables us to define
the degree deg(q) of a non singular quadratic form over a field F with 2=0
along the same lines as Knebusch does for fields with 2 6= 0. We show also
that InWq(F ) ⊆ {q ∈ Wq(F )| deg(q) ≥ n}. In [ A-Ba 2] we have shown
that equality holds (i.e. the degree conjecture holds) if one has the following
equality:

ker
[

InWq(F )→ InWq(F (φ))
]

= φ ·Wq(F )

for any anisotropic n-fold bilinear Pfister form φ over F . Here InWq(F )
means InWq(F )/I

n+1Wq(F ) and F (φ) is the function field of φ over F .
This last equality is according to Kato’s isomorphism equivalent with

ker
[

Hn+1(F )→ Hn+1(F (φ)
]

= F · db1
b1
∧ · · · ∧ dbn

bn
(*)

in Hn+1(F ), where φ =¿ b1, . . . , bn À. The proof of (*) will be finished in
section 4 of this work. The corresponding result for fields with 2 6= 0 has
been announced in [ OVV].

In section 1 we review some well known definitions and results concern-
ing differential forms over a field with 2 = 0. We introduce the Cartier
operator C and the ℘-homomorphism and we prove some technical results
about divisibility of forms by forms in the F -algebra ΩF =

⊕∞
n=0Ω

n
F (see

(1.16)). In section 2 we start to study the behavior of Ωn and Hn+1 under
field extensions. The computation of ker(Ωn

F → Ωn
E) for some field extension

E/F is not so difficult if one can choose a suitable 2-basis of E. We prove
for example ker(Ωm

F → Ωm
F (φ)) = Ωm−n

F ∧ db1 ∧ · · · ∧ dbn if m ≥ n ( and =

0 otherwise). This is the first evidence for the equality (*). The compu-
tation of ker(Hn+1(F ) → Hn+1(E)) is much harder, even for very simple
extensions E/F . We use frequently Kato’s fundamental lemma (see [ Ka 2]
), which is stated here without proof as lemma (2.15). As an important con-
sequence of these computations we obtain that a form w ∈ Ωn

F belongs to
ker(Hn+1(F )→ Hn+1(F (φ))) if and only if w satisfies a certain “differential
equation” in the space Ωn

L where L/F is a purely transcendental extension.
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In fact, let Sn be the set of all maps µ : {1, . . . , n} → {0, 1} with µ(i) = 1
for at least one i. Let L = F (Xµ, µ ∈ Sn) where Xµ are independent vari-
ables. Let M = F (X2

µ, µ ∈ Sn) ⊂ L and set ΩF [M ] for the sub-space of
ΩL (over M) generated by the forms db, b ∈ F , over M . For example if

T =
∑

µ∈Sn b
µX2

µ with bµ =
∏n

i=1 b
µ(i)
i , then T ∈ M and dT ∈ ΩF [M ]. Then

we show that w ∈ Ωn
F is contained in ker(Hn+1(F ) → Hn+1(F (φ))) if and

only if w satisfies an equation in ΩL of the form

w = ℘(u) + dv + λ ∧ dT

with u, v, λ ∈ ΩF [M ] (see (2.25)). Section 3 is of technical nature and
prepares the way for the proof of our main result in section 4. Section 4 is
the heart of this work. We start with a relation w = ℘(u)+dv+λ∧dT where
u, v, λ ∈ ΩF [M ] and we develop a descent procedure to finally end with a
relation w = ℘(u0)+ dv0+λ0 ∧ db1 ∧ · · · ∧ dbn where u0, v0, λ0 ∈ ΩF . This is
exactly the content of (*). In section 5 we explain briefly the basic relations
between quadratic and differential forms. It is of expository character and
details can be found in [ Ka 1], [ A-Ba 2]. Finally in section 6, as mentioned
above, we extend Knebusch’s generic splitting theory to fields with 2 = 0
and prove the analogue of his degree conjecture.
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1 The algebra of differential forms

We will consider in this paper only fields of characteristic 2. Let F be such a
field. Let Ω1F be the F -vector space of absolute differential 1-forms, i.e. Ω1F
is the F -vector space generated by the symbols da, a ∈ F , with the relations
d(a + b) = da + db, d(ab) = adb + bda for a, b ∈ F . In particular d(F 2) = 0,
where F 2 = {a2|a ∈ F} and d : F → Ω1F is a F 2-derivation.

Let us denote by Ωn
F the n-exterior power

∧n(Ω1F ). Thus Ωn
F is a F -

vector space generated by the forms da1 ∧ · · · ∧ dan. The operator d can
be extended to a F 2-linear map d : Ωn

F → Ωn+1
F by d(ada1 ∧ · · · ∧ dan) =

da ∧ da1 ∧ · · · ∧ dan. We will write ΩF or Ω∗F for the F -algebra ⊕∞n=0Ωn
F .

We denote by ZF the F 2-sub algebra {w ∈ Ω∗F |dw = 0}. Since d2 = 0, we
obtain the ideal BF = dΩ∗F in ZF of exact forms. Now let us fix a 2-basis
B = {bi, i ∈ I} of F over F 2, i.e. if we take an ordering of I, then the mono-
mials bi1 · · · bir , i1 < · · · < ir, form a F 2 -basis of F (see [ Ca] or [ Groth]
for details about p-basis). Then it is well known that the (logarithmic) dif-

ferential forms
{

dbi1
bin
∧ · · · ∧ dbin

bin
, i1 < · · · < in

}

form a F−basis of Ωn
F . The

following fact is obvious.

(1.1) Lemma. Let η ∈ ΩF be a form which does not contain db for some
b ∈ B, in its expansion with respect to the above basis. Then η ∧ db = 0
implies η = 0.

Let us denote by Ω
[2]
F the F 2-sub algebra of Ω∗F generated by the loga-

rithmic differential db/b, b ∈ B. Ω
[2]
F depends on the choice of the 2-basis B.

Then a well known result of Cartier (see [ Ca]) asserts that as an F 2- algebra
we have

ZF = BF ⊕ Ω
[2]
F(1.2)

Moreover this decomposition is compatible with the graduation of Ω∗F .
Any w ∈ ZF can be written uniquely as

w = dη +
∑

i1<···<in

a2i1···in
dbi1
bi1
∧ · · · ∧ dbin

bin

so that we can define a homomorphism

C : ZF → Ω∗F(1.3)
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by

C(w) =
∑

i1<···<in

ai1···in
dbi1
bi1
∧ · · · ∧ dbin

bin

C is the well known Cartier-operator (see [ Ca]) and it is uniquely determined
by the following properties

C(a2
db

b
) = a

db

b
(1.4)

C(dη) = 0 for η ∈ Ω·F(1.5)

C(a2w) = aC(w) , a ∈ F , w ∈ ZF(1.6)

C(w ∧ λ) = C(w) ∧ C(λ)(1.7)

In particular C does not depend on the choice of the 2−basis and ker(C) =
BF , Im(C) = Ω∗F . Thus we get a ring isomorphism (compatible with the
graduation)

C : ZF/BF
∼→ Ω∗F(1.8)

For a fixed 2-basis B = {bi, i ∈ I} of F we define the square operator

s : Ω∗F → Ω∗F(1.9)

by

s

(

∑

σ

aσ
dbσ
bσ

)

=
∑

σ

a2σ
dbσ
bσ

where σ runs over tuples of indices i1 < · · · < ip and bσ = bi1 · · · bip , dbσ =
dbi1 ∧ · · · ∧ dbip . Of course s depends on the choice of B. We will write w[2]

instead of s(w) when we have a fixed 2-basis of F . Using (1.9) we also define
the following operator

℘ : Ω∗F → Ω∗F

℘(w) = w[2] + w
(1.10)
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Since s is additive, ℘ is additive too and depends on the choice of the
2-basis B. But any other choice of a 2-basis changes ℘(w) by an exact form,
i.e. we get a well defined group-homomorphism

℘ : Ω∗F → Ω∗F/dΩ
∗
F

which for every n defines a homomorphism

℘ : Ωn
F → Ωn

F/dΩ
n−1
F(1.11)

Using (1.8) one easily checks that

℘ = C−1 − id

We now derive some useful properties of the Cartier operators, which will
be used frequently in the next sections.

(1.12) Proposition. Let {b1, . . . , bn} be elements of a 2-basis B of F . Let
λ ∈ Ω∗F be such that d(λ ∧ db1 ∧ · · · ∧ dbn) = 0. Then there is δ ∈ Ω∗F with

C(λ ∧ db1 ∧ · · · ∧ dbn) = δ ∧ db1 ∧ · · · ∧ dbn.

Proof. We apply induction with respect to n. Assume first n = 1, i.e. let
u = λ ∧ db be a closed form and b ∈ B. From du = 0 we conclude from (1.2)
that u = dn +m[2] with some forms m,n. Write m = m0 +m1 ∧ db

b
where

m0,m1 are forms which do not contain db in the basis representation with
respect to B. We can also write n = n0 + bn1 + n2 ∧ db + bn3 ∧ db where
n0, n1, n2, n3 do not contain odd powers of b in their coefficients nor db in
their 2-basis expansion. Thus

u = m
[2]
0 +m

[2]
1 ∧ db

b
+ dn0 + bdn1 + n1 ∧ db

+ dn2 ∧ db+ bdn3 ∧ db

= λ ∧ db
Comparing terms with db we obtain

m
[2]
0 + dn0 + bdn1 = 0

u = λ ∧ db = m
[2]
1 ∧ db

b
+ n1 ∧ db+ dn2 ∧ db+ bdn3 ∧ db
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The second equation and the assumption du = 0 imply d(n1 ∧ db) =
dn1 ∧ db = 0.

But since n1 does not contain db as well b as odd power in its coefficients,
we see that dn1 does not contain db in its basis expansion. Thus (1.1) implies
dn1 = 0. Thus n1 ∧ db = d(bn1), and since dn2 ∧ db = d(n2 ∧ db), bdn3 ∧ db =
d(bn3 ∧ db) are exact, we conclude

u = m
[2]
1 ∧

db

b
+ dv

with some form v. Applying the Cartier-operator to u we obtain

C(u) = m1 ∧
db

b

and δ = b−1m1 does the job. Let us now assume the proposition for all
integers less than n. Let u = λ∧db1∧· · ·∧dbn with du = 0 and b1, . . . , bn ∈ B.
By induction

C(u) = δ ∧ db2 ∧ · · · ∧ dbn = µ ∧ db1 ∧ db3 ∧ · · · ∧ dbn
with some forms δ, µ. We can assume that δ is free from terms containing
db2, . . . , dbn, respectively µ is free from terms containing db1, db3, . . . , dbn, in
their basis expansion. Set δ = δ0 + δ1 ∧ db1 where δ0, δ1 are free from terms
containing db1. Then

δ0 ∧ db2 ∧ · · · ∧ dbn + δ1 ∧ db1 ∧ db2 ∧ · · · ∧ dbn

= µ ∧ db1 ∧ db3 ∧ · · · ∧ dbn.
Since δ0 ∧ db2 ∧ · · · ∧ dbn is free from terms containing db1 we conclude
δ0 ∧ db2 ∧ · · · ∧ dbn = 0 and C(u) = δ1 ∧ db1 ∧ db2 ∧ · · · ∧ dbn. This proves the
claim. ¤

(1.13) Proposition. Let {b1, . . . , bn} be elements belonging to a 2-basis B of
F . Let v ∈ ΩF be such that

dv ∈ ΩF ∧ db1 ∧ · · · ∧ dbn.
Then there exist forms zµ ∈ ZF and u ∈ ΩF with

dv =





∑

µ6=1

bµzµ + b1 · · · bndu



 ∧ db1 ∧ · · · ∧ dbn

7



where µ runs over all functions {1, . . . , n} → {0, 1} distinct from 1 given by
1(i) = i for all 1 ≤ i ≤ n. Here we have set bµ =

∏n

i=1 bµ(i). Moreover the
forms zµ and u can be chosen free from terms containing db1, . . . , dbn as well
as coefficients containing odd powers of b1, . . . , bn in their 2-basis expansion.

Proof. We show the claim by induction on n. Let us first assume n = 1, i.e.
dv ∈ ΩF ∧ db with b = b1 ∈ B. We write

v = v0 + bv1 + v2 ∧ db+ bv3 ∧ db
where v0, v1, v2, v3 are free from terms containing db and also do not contain
odd powers of b in the expansion of their coefficients with respect to the
2-basis B. Then we have

dv = dv0 + bdv1 + v1 ∧ db+ dv2 ∧ db+ bdv3 ∧ db

= dv0 + bdv1 + (v1 + dv2 + bdv3) ∧ db
By the choice of v0, v1 we see that dv0, dv1 do not contain terms involving

db in their basis expansion with respect to B. But by hypothesis dv ∈ ΩF∧db,
so that we get

dv0 = 0, dv1 = 0

since dv0 and dv1 do not have coefficients containing odd powers of b in their
2-basis expansion. Hence

dv = (v1 + dv2 + bdv3) ∧ db
is of the desired form.

Let us assume the assertion for any integer less than n. Then from dv ∈
ΩF ∧ db1 ∧ · · · ∧ dbn we conclude

dv =





∑

v∈Sn−1,ν 6=1

bνzν + b1 · · · bn−1du



 ∧ db1 ∧ · · · ∧ dbn−1

where Sr = {ν : {1, . . . , r} → {0, 1}} is the set of all functions {1, . . . , r} →
{0, 1}. Here all zν are closed and the zν , u are free from b1, . . . , bn−1. We
write

zν = cν,0 + bncν,1 + cν,2 ∧ dbn + bncν,3 ∧ dbn

u = u0 + bnu1 + u2 ∧ dbn + bnu3 ∧ dbn
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with cν,i, ui free from bn (i.e. do not contain dbn as well as odd powers of bn
in the 2-basis expansion of their coefficients). Since dzν = 0, we have

0 = dcν,0 + bndcν,1 + cν,1 ∧ dbn + dcν,2 ∧ dbn + bndcν,2 ∧ dbn
and the choice of the cν,i is imply

dcν,0 = 0, dcν,1 = 0

cν,1 + dcν,2 + bndcν,3 = 0.

This last equation implies

cν,1 = dcν,2, dcν,3 = 0.

Hence

dv =





∑

ν∈Sn−1,6=1

bν(cν,0 + bndcν,2) + b1(du0 + bndu1)



 ∧ db1 ∧ · · · ∧ dbn−1 +

+





∑

ν∈Sn−1,6=1

bν(cν,2 + bncν,3) + b1(u1 + du2 + bndu3)



 ∧ db1 ∧ · · · ∧ dbn

The expression in the first parenthesis does not contain db1, . . . , dbn and
since dv ∈ 〈db1 ∧ · · · ∧ dbn〉, we conclude (see (1.1))

∑

v∈Sn−1,6=1

bν(cν,0 + bndcν,2) + b1 · · · bn−1du0 + b1 · · · bndu1 = 0

Since by hypothesis cν,0, cν,2, u0, u1 do not contain coefficients with odd
powers of bn in their 2-basis expansion, we conclude

∑

ν∈Sn−1,6=1

bνdcν,2 + b1 · · · bn−1du1 = 0

By induction all cν,2, u1 are free from b1, . . . , bn−1. Then we obtain dcν,2 =
0, du1 = 0. Since

dv =
(

∑

ν∈Sn−1,6=1 b
νcν,2 +

∑

ν∈Sn−1,6=1 bnb
νcν,3

+ b1(u1 + du2) + b1bndu3

)

∧ db1 ∧ · · · ∧ dbn

9



is of desired form, this concludes the proof of the lemma. ¤

(1.14) Remark. Under the hypothesis of the lemma above, one can give a
more precise description of the form v. By the lemma we have

dv =





∑

µ∈Sn,6=1

bµzµ + b1du



 ∧ db1 ∧ · · · ∧ dbn

where b1 = b1 · · · bn, dzµ = 0 for all µ 6= 1. Let µ be such a function and let
1 ≤ i ≤ n with µ(i) = 0. Then

d(bib
µzµ ∧ db1 ∧ · · · ∧ dbi−1 ∧ dbn)

= bµzµ ∧ db1 ∧ · · · ∧ dbn + bidb
µ ∧ zµ ∧ db1 ∧ · · · ∧ dbi−1 ∧ dbi+1 ∧ · · · ∧ dbn

Since bµ contains only bj with j 6= i, we see that the last term is 0 and
hence

d(bib
µzµ ∧ db1 ∧ · · · ∧ dbi ∧ · · · ∧ dbn) = bµzµ ∧ db1 ∧ · · · ∧ dbn.

Also b1du ∧ db1 ∧ · · · ∧ dbn = d(b1u ∧ db1 ∧ · · · ∧ dbn) and we conclude

dv = d
(

∑

µ∈Sn,6=1
µ(i)=0

bib
µzµ ∧ db1 ∧ · · · ∧ d̂bi ∧ · · · ∧ dbn + b1u ∧ db1 ∧ · · · ∧ dbn

)

i.e.

v =
∑

µ∈Sn,6=1
µ(i)=0

bib
µzµ ∧ db1 ∧ · · · ∧ d̂bi ∧ · · · ∧ dbn + b1u ∧ db1 ∧ · · · ∧ dbn + z

(1.15)

with z ∈ ZF a closed form.

The next result characterizes divisibility by pure forms and will be useful
in the next sections. We say that a form ω ∈ ΩF divides the form λ if
λ = η ∧ ω with some form η ∈ ΩF . Then we have

(1.16) Proposition. Let b1, . . . , bn be elements of F contained in a 2-basis B
of F . Let w ∈ Ωm

F be a m-form. If db1, . . . , dbn divide w, then db1 ∧ · · · ∧ dbn

10



divides w.

Proof. Let B = {b1, . . . , bn, . . . } be the given 2-basis. We show the claim
by induction on n. For n = 1 the claim is obvious. Assume the proposition
for n− 1. Then we have w = η ∧ db1 ∧ · · · ∧ dbn−1. Write η = η0 + η1 ∧ dbn
with forms η0, η1 which do not contain dbn in their basis expansion. Then
w = η0 ∧ db1 ∧ · · · ∧ dbn−1 + η1 ∧ db1 ∧ · · · ∧ dbn is divisible by dbn by
hypothesis. Since η0 ∧ db1 ∧ · · · ∧ dbn−1 does not contains dbn, we conclude
η0 ∧ db1 ∧ · · · ∧ dbn−1 = 0 and w = η1 ∧ db1 ∧ · · · ∧ dbn. ¤

(1.17) Remark. Let us consider a rational function field L = F (Xµ;µ ∈ A))
with A finite. Let B = {bi|i ∈ I} be a 2-basis of F . Then B ∪{Xµ, µ ∈ A} is
a 2-basis of L. Let B ⊆ A be a subset and N = F (Xµ, µ ∈ B), respectively
M = F (X2

µ, µ ∈ B) ⊂ N . Let X be any variable Xµ with µ 6∈ B. We will
be later interested in forms contained in ΩL which are generated over M by
the differentials db, b ∈ F . Thus we will define ΩFM = ΩF ⊗ M ⊂ ΩL,
respectively ΩFM [X2] = ΩF ⊗M [X2] ⊂ ΩL. This last set is the M [X2]-
submodule

⊕

i1<···<im

M [X2]dbi1 ∧ · · · ∧ dbim

(for some ordering < in I) of ΩL. For every p(X) ∈ N [X] irreducible and
monic we set for every n ≥ 0

p−∞Ωn
FM [X2] =

{

w

ps
|w ∈ Ωn

FM [X2], s ≥ 1, degX w ≤ s degX p

}

(1.18)

if p ∈M [X2], and

p−∞Ωn
FM [X2] =

{

w

p2s
|w ∈ Ωn

FM [X2], s ≥ 1, degX w ≤ 2s degX p

}

(1.19)

if p 6∈M [X2].
Here we have set degX w = 2t whenever we have w = w0 +w1X

2 + · · ·+
wtX

2t with w0, . . . , wt ∈ Ωn
F , wt 6= 0 for some w ∈ Ωn

FM [X2].
Now we have

(1.20) Lemma. The sum

Ωn
FM [X2] +

∑

p

p−∞Ωn
FM [X2] ⊆ Ωn

L

11



is direct. Here p runs over all irreducible polynomials contained in N [X].

Proof. Let us assume
u0 +

∑

p

up
psp

= 0

in ΩL, with u0, up ∈ ΩFM [X2], degX up < sp degX p for all p. Thus

∏

p

pspuo +
∑

p

(

∏

q 6=p
qsq

)

up = 0

holds in ΩFM [X2]. Recall that sp is even if p 6∈ M [X2], and hence psp is
contained always in M [X2].

We fix now some p0 and we get in ΩFM [X2]

(

∏

p

psp

)

u0 =

(

∏

q 6=p0

qsq

)

up0 +
∑

p6=p0

(

∏

q 6=p
qsq

)

up.

This implies that p
sp0
0 divides the term

(

∏

q 6=p0 q
sq

)

up0 , and since ΩFM [X2]

is a free module, p
sp0
0 divides up0 in ΩFM [X2]. Since degX up0 < sp0 degX p0,

it follows up0 = 0. This proves the lemma. ¤

The relevant point in the above decomposition is that the operators ℘
and d respect this decompositions, whenever ℘ is defined with respect to a
2-basis containing a 2-basis of F . Thus we have:

dΩFM [X2] ⊆ ΩFM [X2]

℘ΩFM [X2] ⊆ ΩFM [X2]

d(p−∞ΩFM [X2]) ⊆ p−∞ΩFM [X2]

℘(p−∞ΩFM [X2]) ⊆ p−∞ΩFM [X2]

(1.21)

If we do not specify a particular 2-basis, the relations above must be
understood as follows. For any field F the maps ΩF → ΩF given by w 7→ w[2]

12



depends on the choice of a 2-basis. If we choose another 2-basis of F and we
denote by w(2) the same operation with respect to this new 2-basis, we have

w[2] = w(2) + dv

with some v ∈ ΩF . Therefore expressions of the form w[2] + dv, which will
often occur in the sequel, make sense if the particular choice of the form v
does not matter. Thus, we will not make sometimes an explicit choice of
a 2-basis when dealing with such expressions. Of course the same remark
applies to expressions of the form ℘w + dv. For example if u ∈ ΩF and
f ∈ F ∗, then for any choice of a 2-basis, the forms ℘(u ∧ df

f
) and ℘(u) ∧ df

f

differ by an exact form.
In the concrete situation above, if we choose u ∈ ΩFM [X2] and f ∈

M [X2], then there is some v ∈ ΩFM [X2] with

℘

(

u ∧ df
f

)

= ℘(u) ∧ df
f

+
dv

f 2

13



2 The behavior of differential forms under

some field extensions

We continue in this section the algebraic study of differential forms by con-
sidering their behavior under field extension. Any field extension F ↪→ L
induces a natural homomorphism Ωn

F → Ωn
L for all n ≥ 0. We will denote by

Ωn(L/F ) the kernel of this homomorphism. It is clear that d(Ωn(L/F )) is
contained in Ωn+1(L/F ). Fixing any 2-basis of F we see that the same holds
true for the operator ℘ and s(= square). We are particularly interested in the
following field extension of F . Let φ =¿ b1, . . . , bn À= 〈1, b1〉⊗ · · ·⊗ 〈1, bn〉
be an anisotropic bilinear Pfister form (see [ Ba 1], [ A-Ba 1]). The fact that
φ is anisotropic means that {b1, . . . , bn} are algebraically independent over
F 2 and hence can be chosen as part of a 2-basis of F . This will be always
assumed in the sequel. The function field F (φ) of the quadric φ = 0 is con-
structed as follows. Let Sn be the set of all maps µ : {1, . . . , n} → {0, 1}
with µ(i) = 1 for at least one index i and choose a variable Xµ for each
µ ∈ Sn. Let L = F (Xµ, µ ∈ Sn) the rational function field over F in the

variables Xµ and set T =
∑

µ∈Sn b
µX2

µ, where b
µ =

∏n

i=1 b
µ(i)
i (T is the so

called pure part of φ). Then the field

F (φ) = L(
√
T )(2.1)

is the function field of φ. Obviously φ ⊗ F (φ) is isotropic, although it is
not necessarily hyperbolic, but metabolic. We are interested in the behavior
of Ωm under the field extension F ↪→ F (φ). To this end we will compute
Ωm(L/F ), Ωm(F (φ)/L) and finally Ωm(F (φ)/F ). We will denote by K the
field F (φ) in what follows.

(2.2) Lemma. Let F (X)/F be a pure transcendental extension of F . Then
Ωm(F (X)/F ) = 0.

Proof. We may assume that F (X)/F has transcendence degree one. Let
B = {bi, i ∈ I} be a 2-basis of F . Then B ∪ {X} is a 2-basis of F (X). If

w =
∑

ci1,... ,im
dbi1
bim
∧ · · · ∧ dbim

bim

14



is in Ωm(F (X)/F ), we have w = 0 in Ωm
F (X). But since

{

dbi1
bi1
∧ · · · ∧ dbim

bim
, i1 < · · · < im

}

.

is part of a F (X)-basis of Ωm
F (X), we conclude ci1···im = 0 for all i1 < · · · < im,

i.e. w = 0 in Ωm
L . ¤

(2.3) Remark. If B is a 2-basis of F , then B∪{Xµ, µ ∈ Sn} is a 2-basis of L.

(2.4) Lemma. Let k be any field of characteristic 2 and t ∈ k \ k2. Then
for m ≥ 1

Ωm(k(
√
t)/k) = Ωm−1

k ∧ dt.

Proof. Since t = (
√
t)2 we have dt = 0 in Ωk(

√
t), and therefore Ωm−1

k ∧dt ⊆
Ωm(k(

√
t)/k). Since t 6∈ k2, we can choose a 2-basis of k, say B, such that

t ∈ B, i.e. B = {t, cj, j ∈ J}. Then {
√
t, cj, j ∈ J} is a 2-basis of k(

√
t). Let

w ∈ Ωm(k(
√
t)/k). Then we have

w =
∑

σ

aσdcσ + (
∑

bτdcτ ) ∧ dt

where σ runs over all maps {1, . . . ,m} → J and τ over all maps {1, . . . ,m−
1} → J which are monotone (i.e. i < j implies σ(i) < σ(j) in some ordering
< of J). Moreover dcσ means dcσ(1) ∧ · · · ∧ dcσ(m), etc. and aσ, bτ ∈ k. Then
in Ωm

k(
√
t)
we get

∑

σ aσdcσ = 0. Since all ci, i ∈ J are part of a 2-basis of

k(
√
t) we conclude aσ = 0 for all σ, i.e. w = (

∑

bτdcτ )∧ dt. This proves the
claim. ¤

In particular we obtain

(2.5) Corollary. Ωm(K/L) = Ωm−1
L ∧ dT .

(2.6) Remark. In the case of a quadratic separable extension of k, say
E = k+kz with z2+z = a, we may assume that a is a square in k and hence
dz = 0. In this case z is a square in E and a 2-basis of k remains a 2-basis
of E. Therefore the argument in the proof of (2.4) shows Ωm(E/k) = {0}.

15



(2.7) Lemma. For all m ≥ n

Ωm(F (φ)/F ) = Ωm−n
F ∧ db1 ∧ · · · ∧ dbn

Otherwise Ωm(F (φ)/F ) = 0.

Proof. We choose a 2-basis of F containing {b1, . . . , bn}. Let us take w in
Ωm(F (φ)/F ), i.e. w ∈ Ωm

F with w = 0 in Ωm
F (φ). From (2.4) we infer that

w = u ∧ dT with some u ∈ Ωm−1
L . Now dT = k1db1 + · · · + kndbm with

some polynomials k1, . . . , kn (see (2.9) below). Thus replacing db1 in u we
see that one can assume that u does not contain db1 in its basis expansion
with respect to the 2-basis B ∪ {Xµ, µ ∈ Sn}. Let us write in Ωm

F

w = w0 + w1 ∧ db1

with forms w0, w1 not containing db1. Then in Ωm
L

w0 + w1 ∧ db1 = u ∧ k1db1 + u ∧ (k2db2 + · · ·+ kndbn)

(w1 + k1u) ∧ db1 = w0 + u ∧ (k2db2 + · · ·+ kndbn)

Since b1 is part of the 2-basis of L and the right hand side of this equation
does not contain db1, we obtain (w1 + k1u) ∧ db1 = 0 in Ωm

L . But w1 + k1u
also does not contain db1, so that w1 + k1u = 0. Thus u = k−11 w1, and
w = k−11 w1 ∧ dT . We get

k1w = w1 ∧ dT(2.8)

which is a relation between forms all of whose coefficients are polynomials.
Now on such differential forms we can specialize the values of the variables
Xµ, obtaining forms defined over F . Letting Xµ → 0 for all µ 6= 1 and
X1 → 1 and using k1 → 1, ki → 0 for i ≥ 2, we get from (2.8) in Ωm

F

w = w̄1 ∧ db1

with some form w̄1. Thus db1, . . . , dbn divide the form w . The lemma follows
from (1.16). ¤

(2.9) Remark. The differential of the polynomial T is

dT = k1db1 + · · ·+ kndbn

16



where k1, . . . , kn are polynomials in F [X2] given by

ki =
∑

µ∈Sn,µ(i)=1

b−1i bµX2
µ, 1 ≤ i ≤ n.

Let us recall that the Cartier-operator defines an isomorphism C : Zn
F/B

n
F →

Ωn
F where Zn

F are the closed forms in Ωn
F and Bn

F = dΩn−1
F are the exact forms.

Following Kato (see [ Ka 1] and [ Mi]) we introduce the operator

℘ : Ωn
F → Ωn

F/dΩ
n−1
F(2.10)

given by

℘(w) = C−1(w)− w

i.e. ℘ = C−1 − id.
For example

℘

(

a
db1
b1
∧ · · · ∧ dbn

bn

)

= (a2 − a)db1
b1
∧ · · · ∧ dbn

bn
(2.11)

In order to complete (2.10) to an exact sequence we introduce the groups
(see [ Ka 1])

νF (n) = ker(℘)(2.12)

Hn+1(F ) = Coker (℘)(2.13)

and we have the exact sequence

0→ νF (n)→ Ωn
F → Ωn

F/dΩ
n−1
F → Hn+1(F )→ 0.(2.14)

Taking a 2-basis B = {bi, i ∈ I} of F we get the square-operator s :

Ωn
F → Ωn

F given by s :
(

∑

σ aσ
dbσ
bσ

)

=
∑

σ a
2
σ
dbσ
bσ

(see section 1). We define

the basis-dependent operator ℘ : Ωn
F → Ωn

F by ℘(w) = s(w) − w and easily
check that

Hn+1(F ) = Ωn
F/(dΩ

n−1
F + ℘Ωn

F ).
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Another choice of a 2-basis would change ℘(w) by an exact form. Thus
dΩn−1

F + ℘Ωn
F is basis independent.

The next two propositions are due to Kato (see [ Ka 1]) and will be used
continuously in what follows.

Let {bi}i∈I be a 2-basis of F and endow I with the structure of a totally
ordered set. For j ∈ I let Fj (resp. F<j ) be the subfield of F generated
over F 2 by the elements bi with i ≤ j (resp. i < j). For fixed n let

∑

n

be the set of all functions α : {1, . . . , n} → I with α(i) < α(j) whenever
1 ≤ i < j ≤ n. We endow

∑

n with the lexicographic ordering, namely
α < β ( α, β ∈

∑

n) if and only if there exists some i such that α(i) <
β(i) and α(j) ≤ β(j) for all j ≤ i. The F -vector space Ωn

F has the basis
{dbα(1) ∧ · · · ∧ dbα(n), α ∈

∑

n} and we can introduce in Ωn
F the following

filtration: for α ∈∑n let Ω
n
F,α, (resp.Ω

n
F,<α), be the subspace of Ω

n
F generated

by the elements dbβ(1) ∧ · · · ∧ dbβ(n) with β ≤ α, (resp. β < α). Using this
notation we formulate the following basic result due to Kato (see also [ Ka 2]).

(2.15) Lemma. Let y ∈ F, α ∈∑n and

wα =
dbα(1)
bα(1)

∧ · · · ∧ dbα(n)
bα(n)

∈ Ωn
F

be such that

(y2 − y)wα ∈ Ωn
F,<α + dΩn−1

F

Then

ywα = v +
da1
a1
∧ · · · ∧ dan

an

for some v ∈ Ωn
F,<α and some ai ∈ F ∗α(i), 1 ≤ i ≤ n.

We will refer to this result in the sequel as Kato’s lemma. An immediate
consequence of (2.15) is

(2.16) Corollary.

νF (n) =

{

∑

i

dai1
ai1
∧ · · · ∧ dain

ain
|aik ∈ F ∗

}

.
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We will now study the behavior of Hn+1 under field extensions. If F ↪→ L
is a field extension we get the obvious maps νF (n)→ νL(n) and H

n+1(F )→
Hn+1(L). We write Hn+1(L/F ) for the kernel of Hn+1(F ) → Hn+1(L).
The main goal of this paper is the computation of Hn+1(F (φ)/F ) for an
anisotropic bilinear n-fold Pfister form φ defined over F . This will be done
in section 4. We will now consider only some easier field extensions.

(2.17) Lemma. Let F (X)/F be a pure transcendental extension. Then

Hn+1(F (X)/F ) = 0

Proof. Let B = {bi, i ∈ I} be a fixed 2-basis of F . We may assume
that F (X)/F has transcendence degree one. Then B ∪ {X} is a 2-basis of
F (X). We fix an ordering in I (and hence in B) and we choose the ordering
of B ∪ {X} with X > bi for all i ∈ I. Let w̄ ∈ Hn+1(F ) with w̄ = 0 in
Hn+1(F (X)). Thus in Ωn

F (X) we have

w = ℘u+ dv

for some u ∈ Ωn
F (X) and v ∈ Ωn−1

F (X). Here ℘ is defined with respect to the

2-basis B ∪ {X}. Hence ℘u = w+ dv with w ∈ Ωn
F . Let α ∈ Σn,F ⊂ Σn,F (X)

be the leading index of w, that is w =
∑

γ∈Σn,F wγ
dbγ
bγ

with wα 6= 0 and

wγ = 0 for all γ > α, and β ∈ Σn,F (X) the leading index of u. If β > α,

since ℘(uβ)
dbγ
bγ
∈ dΩn−1

F (X) + Ωn
F (X),<β, we apply Kato’s lemma and conclude

that uβ
dbγ
bγ

= u′ + da1

a1
∧ · · · ∧ dan

an
, with ai ∈ Fβ(i) and u′ ∈ Ωn

F (X),<β. By this

way we can replace u by a differential form with lower leading index. This
means that we may assume β ≤ α. Then we have

(℘(uα) + wα)
dbα
bα

= d(v) mod Ωn
F (X),<α

with v ∈ Ωn−1
F (X). Since bα(i) < X for all i ∈ I, we conclude that we may

assume that the coefficients of d(v) are in F (X2). Because if we write v =
v0+Xv1+v2∧dX+Xv3∧dX where v0, v1, v2, v3 are generated over F (X2)
by the differentials dbi, i ∈ I, we get

dv = dv0 +Xdv1 + (v1 + dv2 +Xdv3) ∧ dX

and hence v1+dv2+Xdv3 = 0. By the choice of the forms v1, v2, v3 we infer
from the last relation that v1 + dv2 = 0 and dv3 = 0. Therefore inserting
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v1 = dv2 into v we obtain

v = v0 + d(Xv2) +Xd(Xv3)

and since d(Xd(Xv3)) = dX ∧ d(Xv3) = 0, it follows dv = dv0. Thus we
may replace v by v0 and we can assume that v is generated over F (X2) by
the differentials dbi, i ∈ I. Then u is also generated over F (X2) by the
differentials dbi, i ∈ I.

Therefore the relation ℘(u) + w = d(v) holds in the subspace

Ωn
F [X

2]⊕
⊕

p

p−∞Ωn
F [X

2] of Ωn
F (X),

where p runs over all irreducible polynomials in F [X2]. Let us write

uα = uα,0 +
∑

p

uα,p , v = v0 +
∑

p

vp ,

with uα,0 ∈ F [X2], v0 ∈ Ωn−1
F [X2], resp. up ∈ p−∞F [X2], vp ∈ p∞Ωn−1

F [X2].
Then

wα
dbα
bα

= ℘uα,0
dbα
bα

+ dv0 +
∑

p

(

℘uα,p
dbα
bα

+ dvp

)

mod Ωn
F (X),<α

and since ℘, d are compatible with the above direct sum, we see that

wα
dbα
bα

= ℘uα,0
dbα
bα

+ dv0 mod Ωn
F,<α[X

2]

holds in Ωn
F [X

2]. We write now uα,0 = uα,0 + X2sus, v0 = v0 + X2rvr with
us ∈ F , vr ∈ Ωn−1

F and 2s = deg(uα,0), 2r = deg(v0), deg(uα,0) < 2s,
deg(v0) < 2r. Thus

wα
dbα
bα

= ℘uα,0
dbα
bα

+ dv0 + [X4su[2]s +X2sus]
dbα
bα

+X2rdvr mod Ωn
F,<α[X

2].

Let us first assume 4s > 2r. Then comparing coefficients we get u
[2]
s
dbα
bα
∈

Ωn
F,<α and applying the Cartier-operator it follows us = 0, which is a contra-

diction. Similarly if 2r > 4s, then dvr ∈ Ωn
F,<α, including X

2rdvr in Ωn
F,<α,

we conclude that we can lower the degree of v0. Thus we are lead to the
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case 4s = 2r. If 4s = 2r > 0, then we get u
[2]
s
dbα
bα

= dvr mod Ωn
F,<α and

applying the Cartier operator we obtain us
dbα
bα
∈ Ωn

F,<α, that is us
dbα
bα

= 0,

which is a contradiction. Thus we have s = r = 0, i.e. wα
dbα
bα

= ℘u0
dbα
bα

+ dv0
mod Ωn

F,<α with u0 ∈ F and v0 ∈ ΩF . Replacing in w, this see w can be rep-
resented by a differential form with lower leading index. This shows w = 0
in Hn+1(F ), and concludes the proof of the lemma. ¤

In particular we have Hm+1(L/F ) = (0) for all m, where L is the field
extension F (Xµ, µ ∈ Sn) introduced at the beginning of this section.

We want now to compute Hm+1(F (φ)/L), where F (φ) = L(
√
T ) (see

(2.1)). To this end we prove the following general fact.

(2.18) Lemma. Let k be field of characteristic 2, and b ∈ k \ k2. Then

Hm+1(k(
√
b)/k) = Ωm−1

k ∧ db

Proof. Since b ∈ k \ k2 we can take b part of a 2-basis of k. Let
B = {b1 = b, b2, . . . } be a 2-basis of k. Then B′ = {

√
b, b2, . . . } is a 2-basis

of k(
√
b). Take now w̄ ∈ Hm+1(k(

√
b)/k), i.e. w̄ ∈ Hm+1(k) with w̄ = 0 in

Hm+1(k(
√
b)). This means

w = ℘u+ dv

with u ∈ Ωm

k(
√
b)
, v ∈ Ωm−1

k(
√
b)
. We order the 2-basis B′ with

√
b > bi for all

i (6= 1). Let α ∈ Σm,k, α(i) > 1 for all i = 1, . . . ,m, be the leading index
of w and β ∈ Σm,k(

√
b) the leading index of u. Thus we can assume, as in the

proof of (2.17), β ≤ α. In this case we have

(℘(uα) + wα)
dbα
bα

= d(v) mod Ωn

k(
√
b),<α

with v ∈ Ωn−1
k(
√
b)
. Since bα(i) <

√
b for all i, we conclude that the leading

coefficient of d(v) is in k, then uα is also in k and we may assume that
v ∈ Ωm−1

k .
Since ker[Ωm

k → Ωm

k(
√
b)
] = Ωm−1

k ∧ d(b), we conclude that

wα
dbα
bα

= ℘(uα)
dbα
bα

+ d(v) mod Ωn
k,<α + Ωm−1

k ∧ d(b)
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in Ωm
k . Replacing in w, this shows w can be represented by a differential

form with lower leading index. This shows w ∈ Ωm−1
k ∧ db in Hn+1(k), and

concludes the proof of the lemma. ¤

(2.19) Corollary.

Hm+1(F (φ)/L) = Ωm−1
L ∧ dT

Let us close this section with some remarks concerning the computation
ofHn+1(F (φ)/F ). We write y =

√
T , so thatK = F (φ) = L[y]. Fix a 2-basis

B = {bi, i ∈ I} of F , so that B∪{Xµ, µ ∈ Sn} is a 2-basis of L. We order the
elements of B according to an order of I and the elements of {Xµ, µ ∈ Sn} for
example using the lexicographic ordering and we set B < {Xµ, µ ∈ Sn} for
an ordering in B∪{Xµ, µ ∈ Sn}. Since y2 = T =

∑

µ b
µX2

µ in K, we see that

the elements of B are not 2-independent over K2. Let us fix some b = b1 ∈ B.
Then B \ {b1} ∪ {Xµ, µ ∈ Sn} ∪ {y} is a 2-basis of K. We order this basis
such that y is the maximal element. In particular we have the operator ℘ on
ΩK defined with respect to this 2-basis. Take now w̄ ∈ Hn+1(K/F ). Then

w = ℘u+ dv(2.20)

with u ∈ Ωn
K and v ∈ Ωn−1

K . From ℘u = w + dv, and using Kato’s lemma
with a filtration defined by the above ordering, we see that one can assume in
(2.20) that u and v are differential forms generated over K by the differential
dbi, i ∈ I (i 6= 1), i.e. they do not contain differentials of the type dXµ

or dy. Looking at the 2-basis expansion of both sides of (2.20) we easily
conclude that u and v do not contain y in their coefficients, i.e. they are
contained in L. Therefore the forms u, v (and w) are defined over L and are
generated over L by the differentials dbi, i ∈ I. From (2.4) we conclude that
w+ ℘u+ dv ∈ Ωn(K/L) ⊂ Ωn

L as a form in Ωn
L, and using (2.4) we obtain in

Ωn
L

w = ℘u+ dv + λ ∧ dT(2.21)

with λ ∈ Ωn−1
L . We will show below that the coefficients of u, v, λ in the

2-basis expansion of L do not contain odd powers of the variables Xµ and
that λ also is generated by the differentials dbi, i ∈ I. Therefore if we define
the subfield of L

M = F (X2
µ, µ ∈ Sn) ⊂ L
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we see that all forms u, v, λ, dT and w are generated over M by the dif-
ferentials dbi, i ∈ I, i.e. they are contained in the subspace ΩF ⊗M of ΩL.
We show now this assertion. The fact that λ does not contain differentials
dXµ, µ ∈ Sn follows from (2.21) and the fact that all other forms, including
dT , do not contain such forms. Let us write u = u0 +Xu1 , v = v0 +Xv1,
λ = λ0 +Xλ1, for some fixed X = Xµ, and where ui, vi, λi (i = 0, 1) do not
contain odd powers of X in their coefficients, with respect to their 2-basis
representation. Then in Ωn

L

w = ℘u0 +X2u
[2]
1 +Xu1 + dv0 +Xdv1 + v1 ∧ dX + λ0 ∧ dT +Xλ1 ∧ dT

and this implies

w = ℘u0 +X2u
[2]
1 + dv0 + λ0 ∧ dT(2.22)

u1 + dv1 + λ1 ∧ dT = 0(2.23)

v1 ∧ dX = 0.(2.24)

Since v1 does not contain dX, we obtain from (2.24) v1 = 0 and therefore
u1 = λ1 ∧ dT . Inserting this in (2.22) it follows

w = ℘u0 + dv0 + (λ0 +X2Tλ
[2]
1 ) ∧ dT,

since from u1 = Tλ1 ∧ dT
T

we get u
[2]
1 = T 2λ21 ∧ dT

T
= Tλ

[2]
1 ∧ dT . The form

λ0 + X2Tλ
[2]
1 does not contain odd powers of X , and the above equation

therefore shows that we can eliminate all odd powers of X from u, v and λ.
Since X = Xµ was arbitrary, this proves the claim. Therefore we have shown

(2.25) Proposition. Let w̄ ∈ Hn+1(K/F ) and fix a 2-basis B = {bi, i ∈ I}
of F . Then there exist forms u, v, λ in ΩF ⊗M ⊂ ΩL, i.e. generated over
M = F (X2

µ, µ ∈ Sn) by the differentials dbi, i ∈ I with

w = ℘u+ dv + λ ∧ dT

where ℘ is defined with respect to any 2-basis of L containing the basis B

The next two sections will be devoted to the study of this equation.
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(2.26) Remark. The behavior of νF (m) under field extensions is easier
to handle than that of Hm+1(F ). For example (2.7) implies Ωm(F (φ)/F ) =
Ωm−n
F ∧db1∧· · ·∧dbn if φ =¿ b1, . . . , bn À. Hence ker(νF (m)→ νF (φ)(m)) =

Ωm−n
F ∧db1∧· · ·∧dbn∩νF (m). Thus this kernel is determined by the following

(2.27) Lemma. For any a ∈ Ωm−n
F the following statements are equivalent:

(i) a ∧ db1
b1
∧ · · · ∧ dbn

bn
∈ νF (m)

(ii) ℘(a) ∈
∑

ε∈Sn,ε6=0
bε[Ωm−n

F ][2] + dΩm−n−1
F +

n
∑

i=1

Ωm−n−1
F ∧ dbi

where ε = (ε1, . . . , εn) runs over all sequences with εi = 0 or 1.

Proof. Choose a 2-basis B of F with b1, . . . , bn ∈ B. Without restriction
we can assume B finite, i.e. B = {b1, . . . , bn, . . . , bN} and let us denote by η
the differential form db1

b1
∧ · · · ∧ dbn

bn
.

1. First we prove that (ii) implies (i). Let a be an element in Ωm−n
F such

that ℘(a) ∈∑ε∈Sn,ε6=0 b
ε[Ωm−n

F ][2] + dΩm−n−1
F +

∑n

i=1Ω
m−n−1
F ∧ dbi, i.e.

a can be written as

a = a[2] +
∑

ε6=0
bεA[2]ε + dB +

n
∑

i=1

Ei ∧ dbi

with Aε ∈ Ωm−n
F , B ∈ Ωm−n−1

F , Ei ∈ Ωm−n−1
F . Since (

∑

ε6=0 b
εA

[2]
ε ) ∧ η

and dB ∧ η are in d(Ωm−1
F ), and Ei ∧ dbi ∧ η = 0, we obtain that

d(a ∧ η) = 0

and

C(a ∧ η) = C((a[2] +
∑

ε6=0
bεA[2]ε + dB +

n
∑

i=1

Ei ∧ dbi) ∧ η)

= C(a[2] ∧ η) +
∑

ε6=0
C(bεA[2]ε ∧ η) + C(dB ∧ η) = a ∧ η

This implies that a ∧ η ∈ ν(m)F and proves (i).
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2. Now let a be in Ωm−n
F such that a ∧ η ∈ νF (m). We write a as

a =
∑

µ

cµ
dbµ
bµ

where dbµ
bµ

=
dbµ(1)

bµ(1)
∧ · · ·∧ dbµ(m−n)

bµ(m−n)
, and cµ ∈ F . Note that a∧ η ∈ νF (m)

implies that d(a ∧ η) = 0 and C(a ∧ η) = a ∧ η.
Be k the maximal index k > n such that

a = R0 + bkR1

where R0, R1 are differential forms generated by db1
b1
, . . . , dbN

bN
, with

coefficients in F 2(b1, . . . , bk−1). Also we decompose R0 and R1 as R0 =
M0+M1∧ dbk

bk
and R1 =M2+M3∧ dbk

bk
. Then d(a∧η) = 0 implies that

[

d(M0) + bkd(M1) + bkM1 ∧
dbk
bk

+ (d(M2) + bkd(M3)) ∧
dbk
bk

]

∧ η = 0

which means that

d(M0) ∧ η = 0

d(M1) ∧ η = 0

d(M2) ∧ η = 0

M1 ∧ η = dM3 ∧ η.

From the last relation we obtain M1 = d(M3) + E where E is in
Ωm−n−1
F ∧ db1

b1
+ · · · + Ωm−n−1

F ∧ dbn
bn

. Replacing in the above decom-
position of a ∧ η we get

a =M0 +M2 ∧
dbk
bk

+ d(bkM3) + E.

Now we work with a′ = M0 +M2 ∧ dbk
bk

which is also generated by db1
b1
,

. . . , dbN
bN

, with coefficients in F 2(b1, . . . , bk−1). Since d(M0)∧ η = 0 and
d(M2) ∧ η = 0 we have that a′ ∧ η = 0. By repeating of the above
procedure on a′ we conclude that a can be written as

a =M + d(G) +H
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whereM is generated by db1
b1
, . . . , dbN

bN
with coefficients in F 2(b1, . . . , bn),

G ∈ Ωm−n−1
F and H in Ωm−n−1

F ∧ db1
b1

+ · · ·+Ωm−n−1
F ∧ dbn

bn
. This means

that a can written as

a =
∑

µ∈Σm−n

cµ
dbµ
bµ

+ d(G) +H

where each cµ is in F
2(b1, . . . , bn), i.e. cµ =

∑

ε c
2
µ,εb

ε with ε = (ε1, . . . , εn)
running over all sequences with εi = 0 or 1. Reordering the above re-
lation we obtain

a =
∑

ε

bε

(

∑

µ

c2µ,ε
dbµ
bµ

)

+ d(G) +H.

Note that each
(

∑

µ c
2
µ,ε

dbµ
bµ

)

is in Ω
[2]
F so we will denote it by A

[2]
ε . By

this way we write a as

a =
∑

ε

bεA[2]ε + d(G) +H = A
[2]
0 +

∑

ε6=0
bεA[2]ε + d(G) +H.

Finally we compute C(a∧ η). Since bεA[2]ε ∧ η, d(G)∧ η ∈ d(Ωm−1
F ) and

H ∧ η = 0, we have

C(a ∧ η) = C(A
[2]
0 ∧ η) = A0 ∧ η.

Using that C(a ∧ η) = a ∧ η, we obtain a = A0 + H ′ with H ′ in
Ωm−n−1
F ∧ db1

b1
+ · · ·+ Ωm−n−1

F ∧ dbn
bn

. This means that

a = a[2] +
∑

ε6=0
bεA[2]ε + d(G) +H ′′

where H ′′ = H +H ′, completing the proof. ¤

Considering the case m = n we obtain

(2.28) Corollary.

ker(νF (n)→ νF (φ)(n)) =

{

a
db1
b1
∧ · · · ∧ dbn

bn
|℘(a) ∈ DF (φ

′)

}
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3 Some technical results

Let us first recall some notation. Let Sn be the set of maps µ : {1, . . . , n} →
{0, 1} with µ(i) = 1 for at least some index i. If µ is defined by µ(i) = 1,
µ(j) = 0 for j 6= i we write i instead of µ. Let L = F (Xµ, µ ∈ Sn) and for a
fixed 0 ≤ s ≤ n we set N = F (Xµ|µ 6= 0, . . . , s) , M = F (X2

µ|µ 6= 0, . . . , s),
(if s = 0 we get N = L and M is the field introduced in the last section).

(3.1) Lemma. Let X = Xs. If f ∈ M [X2] is decomposed in monic irre-
ducible polynomials in M [X], say

f = a
∏

p

pnp (a ∈M)

then for each p holds p ∈M [X2] or np ≡ 0 (mod 2).

Proof. Let p ∈ M [X] be an irreducible factor of f and assume p 6∈ M [X2].
This means DX(p) 6= 0, where DX(p) is the derivative of p with respect to
X. Let us assume np = 2t + 1 for some t ≥ 0. Since f ∈ M [X2] implies
DX(f) = 0, we obtain

DX

(

ap2t+1
∏

q 6=p
qnq

)

= 0

ap2t+1DX

(

∏

q 6=p
qnq

)

+ a

(

∏

q 6=p
qnq

)

p2tDX(p) = 0

(

∏

q 6=p
qnq

)

DX(p) = pDX

(

∏

q 6=p
qnq

)

But degDX(p) < degX(p) implies that p divides
∏

q 6=p q
nq inM [X], which

is impossible. This proves the claim. ¤

For any irreducible monic polynomial p ∈ N [X](X = Xs) we will write
N(p) for the quotient field N [X]/(p). Let us fix a 2-basis B = {bi, i ∈ I} of
F, so that B ∪ {Xµ \ µ 6= 1, . . . , s} is a 2-basis of N . If p ∈ M [X2], there is
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some bi ∈ B such that B \ {bi} ∪ {X̄µ, µ 6= 1, . . . , s− 1} is a 2-basis of N(p),
where X̄µ denotes the image of Xµ in N(p). If p 6∈ M [X2] then B is part
of a 2-basis of N(p) and in fact there is some index i0 6= 1, . . . , s − 1 such
that B ∪ {X̄µ, µ 6= i0, 1, . . . , s − 1} is a 2-basis of N(p). The natural map
N [X]→ N(p) induces a homomorphism Ωm

FM [X2]→ Ωm
N(p).

(3.2) Lemma. a) If p ∈M [X2]

ker(Ωm
FM [X2]→ Ωm

N(p)) = pΩm
FM [X2] + Ωm−1

F M [X2] ∧ dp

b) If p 6∈M [X2]

ker(Ωm
FM [X2]→ Ωm

N(p)) = p2Ωm
FM [X2]

Proof. a) Since p ∈ M [X2], there is some bk ∈ B such that Dbk(p) 6= 0 in
N(p), because otherwise one would infer that p is a square in M [X]. But in
N(p) we have 0 = dp =

∑

bj
Dbj(p)dbj, where Dbk(p) 6= 0 is the coefficient of

dbk. Choose ∆ ∈ M [X2] with ∆ ·Dbk(p) = 1 + p · r in M [X2] and let ∆̄ be
the image in N(p). Then

dbk = ∆̄
∑

i6=k
Dbi(p)dbi in ΩN(p)

Let w ∈ Ωm
FM [X2] be in the kernel of Ωm

FM [X2] → Ωm
N(p), i.e. w = 0 in

ΩN(p). We have by definition of Ωm
FM [X2]

w =
∑

γ

aγdbγ + (
∑

δ

cδdbδ) ∧ dbk

where γ runs over all
∑

m(I) with k 6∈ Im(γ) and δ runs over
∑

m−1(I)
with k 6∈ Im(δ) and aγ, cγ ∈ M [X2]. Recall that

∑

m(I) are all maps
γ : {1, . . . ,m} → I with γ(1) < · · · < γ(m) in a fixed ordering of I. Then in
Ωm
N(p)

∑

aγdbγ + (
∑

cδdbδ) ∧∆
∑

i6=k
Dbi(p)dbi = 0

(we omit the bars for simplicity).
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Thus
∑

k 6∈γ
(aγ +∆

∑

δ∪j=γ
cδDbj(p))dbγ = 0

Here k 6∈ γ means γ ∈∑m(I) with k 6∈ Im(γ) and δ ∪ j = γ means that
δ ∈∑m−1(I) can be extended to γ with j ∈ Im(γ).

Since B \ {bk} is part of a 2-basis of N(p) it follows that the dbγ, k 6∈ γ
are linear independent over N(p) and hence in N(p)

aγ = ∆
∑

δ∪j=γ
cδDbj(p).

Then in N [X] we have

aγ = ∆
∑

δ∪j=γ
cγDbj(p) + tγ · p

for each γ ∈
∑

m, k 6∈ γ, with tγ ∈ N [X] . It follows easily that tγ ∈ M [X2]
for all γ, i.e. the above relation holds in M [X2]. Inserting in w we obtain

w =
∑

k 6∈γ(
∑

δ∪j=γ ∆cδDbj(p) + ptγ)dbγ + (
∑

k 6∈δ cδdbδ) ∧ dbk

=
∑

k 6∈δ(cδdbk +∆
∑

j 6=k cδDbj(p)dbj) ∧ dbδ + p
∑

k 6∈γ tγdbγ

=
∑

k 6∈δ cδ(dbk +∆
∑

j 6=kDbj(p)dbj) ∧ dbδ + p
∑

k 6∈γ tγdbγ

Replacing the coefficient 1 of dbk by 1 = ∆Dbk(p) + pr, we get

w =
∑

k 6∈δ
cδ∆dp ∧ db+ p(

∑

k 6∈γ
tγdbγ + r

∑

k 6∈δ
cδdbk ∧ dbδ) = w1 ∧ dp+ pw2

with w1, w2 in ΩFM [X2].
b) Let us assume p 6∈ M [X2]. Then B is part of a 2-basis of N(p). Let

w ∈ ker(Ωm
FM [X2] → Ωm

N(p)) and set w =
∑

γ aγdbγ ∈ Ωm
FM [X2], γ ∈ ∑m,

aγ ∈M [X2]. Thus
∑

āγdbγ = 0 in Ωm
N(p), and by the remark above, we have

āγ = 0 in N(p) for all γ. Thus aγ = p · tγ, tγ ∈ N [X].
But aγ ∈M [X2] implies DXµ

(aγ) = 0 for all µ 6= 1, . . . , s− 1. Thus

DXµ
(p) · tγ + pDXµ

(tγ) = 0.
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We have p 6∈M [X2], so that there is some µ 6= 1, . . . , s−1 with DXµ
(p) 6= 0.

Choose this µ in the equation above. Then it follows p|DXµ
(p)tγ in N [X]

for all γ. But p does not divide DXµ
(p), and hence tγ = psγ, sγ ∈ N [X].

Thus aγ = p2sγ for all γ, and since aγ ∈ M [X2], it follows sγ ∈ M [X2] for
all γ. Therefore w = p2s with some s ∈ Ωm

FM [X2]. This proves the lemma. ¤

Let u ∈ ΩFM [X2] be a form generated over M [X2] by forms defined over
F . The choice of any 2-basis B of F enable us to define u[2] (resp. ℘(u))
and this form is uniquely determined module dΩFM [X2] (see remark (1.17)).
We are interested in the behavior of u[2] under the reduction homomorphism
ΩFM [X2] → ΩN(p), where p is any irreducible polynomial in N [X]. In par-

ticular we want to compare u[2] with u[2], where this last square is taken with
respect to the 2-basis of N(p) as defined at the beginning of this section. In
this case we have

(3.3) Lemma.

u[2] − u[2] ∈ dΩFM [X2]

(3.4) Lemma. Let u, dv, λ ∈ Ω·FM [X2] and T ∈ M [X2], defined by T =
∑

µ∈Sn,µ6=1,... ,s−1 b
µX2

µ.
Assume

u[2] + dv = λ ∧ db1 ∧ · · · ∧ dbr ∧ dT̄

in ΩN(p), where p ∈ N [X] is irreducible and monic and b1, . . . , br ∈ F . Then

a) If p ∈M [X2], there exists δ, u1, u2 ∈ ΩFM [X2] such that

u = δ ∧ db1 ∧ · · · ∧ dbr ∧ dT + pu1 + u2 ∧ dp.

b) If p 6∈M [X2], there exists δ, u1 ∈ ΩFM [X2] such that

u = δ ∧ db1 ∧ · · · ∧ dbr ∧ dT + p2u1.

Proof. Since u[2] + dv is closed, we can apply the Cartier-operator to this
form and we get C(u[2] + dv) = u. Thus in ΩN(p)

u = C(λ ∧ db1 ∧ · · · ∧ dbr ∧ dT̄ ).
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If db1 ∧ · · · ∧ dbr ∧ dT̄ = 0, then u = 0 and the lemma follows from (3.2).
Thus we can assume db1 ∧ · · · ∧ dbr ∧ dT̄ 6= 0, in ΩN(p), and therefore we can
take {b1, . . . , br, T̄} as part of a 2-basis of N(p). Then (1.12) implies

u = δ̄ ∧ db1 ∧ · · · ∧ dbr ∧ dT̄

with some δ̄ ∈ ΩN(p). We will show that δ̄ is contained in the image Ω̄FM [X2]
of ΩFM [X2] in ΩN(p). It is clear that once we have this, the lemma follows
from (3.2).

a) Assume p ∈M [X2]. Then there is some i0 ∈ I such that B\{bi0}∪{X̄µ,
µ 6= 1, . . . , s−1} is a 2-basis of N(p) (we have chosen a 2-basis of F including
b1, . . . , br). We write in ΩN(p)

δ̄ = δ̄0 + δ̄1 ∧ dX̄

where δ̄0, δ̄1 are forms not containing dX̄ = dX̄s. Then

u = δ0 ∧ db1 ∧ · · · ∧ dbr ∧ dT̄ + δ1 ∧ dX̄ ∧ db1 ∧ · · · ∧ dbr ∧ dT̄

Since u ∈ ΩFM [X2] can not contain dX̄ in its expansion in this 2-basis of
N(p), we conclude that

u = δ0 ∧ db1 ∧ · · · ∧ dbr ∧ dT̄

(Notice that the expansion of dbi0 coming from dp = 0 in ΩN(p) does not
contain dX̄, because p ∈M [X2]).

We can proceed in the same way with the other variablesXµ, µ 6= 1, . . . , s−
1, and we finally obtain that δ0 is free from all differentials dXµ, µ 6=
1, . . . , s − 1. Thus δ0 is generated over N(p) by the differentials dbi, i ∈
I \ {i0}. We write now the coefficients of δ0 in the 2-basis expansion. First
we set δ0 = δ′0 + X̄δ′′0 where X̄ appears in the coefficients of δ′0, δ

′′
0 only in

even powers. Then

u = δ′0 ∧ db1 ∧ · · · ∧ dbr ∧ dT̄ + X̄δ′′0db1 ∧ · · · ∧ dbr ∧ dT̄

The fact that u is in Ω̄FM [X2] implies that the coefficients of u (in the 2-
basis expansion) do not contain odd power of X̄. Comparing coefficients we
obtain

u = δ′0 ∧ db1 ∧ · · · ∧ dbr ∧ dT̄
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with δ′0 free from odd powers of X̄. Doing the same with the other variables
we finally conclude u = δ̄ ∧ db1 ∧ · · · ∧ dbr ∧ dT̄ with δ̄ ∈ Ω̄FM [X2]. From
(3.2) follows the claim. The case (b) i.e. p 6∈ M [X2] can be treated in a
similar way and we omit the proof. ¤

(3.5) Lemma. Let p ∈M [X2] be irreducible and monic (in N [X]). If

pu = v ∧ dp

in ΩFM [X2] with u, v ∈ ΩFM [X2], then there exist v1, v2 ∈ ΩFM [X2] with

v = pv1 + v2 ∧ dp.

Proof. Since p ∈M [X2], we have DXi
(p) = 0 for all i 6= 1, . . . , s− 1. Thus

dp =
∑

i∈I
Dbi(p)dbi.

The fact that p is irreducible implies dp 6= 0 and hence there is some i0 ∈ I
with Dbi0

(p) 6= 0. Let us write p(X) = X2n+ · · · = p0+bi0p1, where p0, p1 are
polynomials whose coefficients do not contain odd powers of bi0 in the 2-basis
expansion. Hence Dbi0

(p) = p1 and degX p1 < deg p. In particular p 6 |p1.
Therefore one can find polynomials ∆, t ∈ M [X2] with Dbi0

(p)∆ = 1 + p · t.
Let us set u = u0 + u1 ∧ dbi0 , v = v0 + v1 ∧ dbi0 with u0, u1, v0, v1 free from
dbi0 . Thus

p(u0 + u1 ∧ dbi0) = (v0 + v1 ∧ dbi0) ∧ (Dbi0
(p)dbi0 +

∑

i 6=i0

Dbi(p)dbi)

implies

pu0 = v0 ∧
∑

i6=i0

Dbi(p)dbi

pu1 = Dbi0
(p)v0 + v1 ∧

∑

i6=i0

Dbi(p)dbi.

Taking modulo p this equations, we obtain in ΩN(p)

(Dbi0
(p)v0 = v1 ∧

∑

i6=i0

Dbi(p)dbi
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and since ∆̄Dbi0
(p) = 1 in N(p), it follows

v0 = ∆̄v1 ∧
∑

i6=i0

Dbi(p)dbi.

But all these forms are contained in ΩFM [X2] so that (3.2) (a) implies

v0 = ∆v1 ∧
∑

i6=i0

Dbi(p)dbi) + pv3 + v4 ∧ dp

with v3, v4 ∈ ΩFM [X2]. Inserting v0 in v = v0 + v1 ∧ dbi0 we get

v = ∆v1 ∧
∑

i6=i0

Dbi(p)dbi + pv3 + v4 ∧ dp+ v1 ∧ dbi0

= v1 ∧ (∆
∑

i6=i0

Dbi(p)dbi + dbi0) + pv3 + v4 ∧ dp.

Since 1 = ∆Dbi0(p) + p · t in M [X2], we get

v = v1 ∧ (∆dp+ ptdbi0) + pv3 + v4 ∧ dp
= p(v1 ∧ tdbi0 + v3) + (∆v1 + v4) ∧ dp

which shows that v has the desired form. ¤

(3.6) Lemma. Let dv, λ be forms in ΩFM [X2], b1, . . . , br ∈ F be 2-
independent and T as before. Assume

dv = λ ∧ db1 ∧ · · · ∧ dbr ∧ dT

in ΩN(p), where p is monic and irreducible. Then

a) If p ∈M [X2], there exist δ, v1, v2 ∈ ΩFM [X2] such that

dv = δ ∧ db1 ∧ · · · ∧ dbr ∧ dT + d(pv1 + v2 ∧ dp)

b) If p 6∈M [X2], there exist δ, v1 ∈ ΩFM [X2] such that

dv = δ ∧ db1 ∧ · · · ∧ dbr ∧ dT + p2dv1
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Proof. If db1 ∧ · · · ∧ dbr ∧ dT = 0 in ΩN(p), and therefore dv = 0, we may
use (3.2) to prove the lemma. Hence we will assume db1 ∧ · · · ∧ dbr ∧ dT 6= 0
in ΩN(p), and for the time being we set T = br+1. Thus b1, . . . , br+1 can be
chosen as part of a 2-basis of N(p). From (1.13) and (1.14) we infer in N(p)

v =
∑

µ

bib
µzµ ∧ db1 ∧ · · · ∧ d̂bi ∧ · · · dbr+1 + b1u ∧ db1 ∧ · · · ∧ dbr+1 + z

with zµ, z closed forms in ΩN(p), µ running over the index set indicated
by (1.13). We shall next prove that the form zµ, u, z can be chosen in
Ω̄FM [X2]. Let us first assume p ∈M [X2]. We take a 2-basis of N(p) of the
form B \ {bi0} ∪ {Xµ} where Xµ are all variable involved (X = Xs). Let us
fix some variable Xµ which we denote by Y . Thus in N(p) we have

zµ = eµ,1 + Ȳ eµ,2 + (eµ,3 + Ȳ eµ,4) ∧ dȲ

with forms eµ,i free from dȲ and whose coefficients are free from odd powers
of Y . There are similar decompositions for u, z. Since zµ is closed we get

0 = deµ,1 + Ȳ deµ,2 + eµ,2 ∧ dȲ + deµ,3 ∧ dȲ + Ȳ deµ,4 ∧ dȲ .

Thus we obtain

deµ,1 = deµ,4 = 0, eµ,2 = deµ,3.

Inserting these expressions for zµ, u and z in the equation for v, we get

v =
∑

µ

bib
µzµ,1 ∧ db1 ∧ · · · ∧ d̂bi ∧ · · · ∧ dbr+1

+b1u1 ∧ db1 ∧ · · · ∧ dbr+1 + z1

when all zµ,1 and z1 are closed and moreover zµ,1, z1 and u1 are free from dȲ
and Ȳ . Doing the same with the other variables, we finally conclude that
the forms zµ, u and z can be taken in ΩFM [X2].

Therefore we have v −∑µ bib
µzµ ∧ db1 ∧ · · · ∧ d̂bi ∧ · · · ∧ dbr+1 − b1u ∧

db1 ∧ · · · ∧ dbr+1 − z ∈ ker(Ωm
FM [X2]→ Ωm

N(p)) and from (3.2) it follows

v −
∑

µ

bib
µzµ ∧ db1 ∧ · · · ∧ d̂bi ∧ · · · ∧ dbr+1 − b1u ∧ db1 ∧ · · · ∧ dbr+1 − z

= pv1 + v2 ∧ dp
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with some v1, v2 ∈ ΩFM [X2]. We apply now d to this relation and obtain
(a).

Let us now assume p 6∈ M [X2]. Then these is some index µ0 such that
DXµ0

(p) 6= 0 and B∪{Xµ, µ 6= µ0}∪{y}, where y is the image of X in N(p), is
a 2-basis of N(p). All variables Xµ, µ 6= µ0 as well as y can be handled in the
same way as in the first case, so that we are led to consider only the variable
Xµ0 . Via the relation dp = 0 we express dXµ0 in terms of the other differen-
tials, so that we may assume that all zµ, u, z do not contain dXµ0 too. Thus
X̄µ0 may appear in odd powers in the coefficients of zµ, u, z. Let us write
p = p0 +Xµ0p1with p0, p1 not containing Xµ0 in odd powers. Thus in N(p)
we have X̄µ0 = p̄0/p̄1, so that replacing X̄µ0 by p̄0/p̄1 in these coefficients,
we get rid of the odd powers of X̄µ0 , but there appear again the variables
Xµ, µ 6= µ0, in these coefficients. We apply again the above procedure to get
rid of the odd powers of these variable in the forms zµ, u, z. Therefore we
may assume zµ, u, z ∈ ΩFM [X2]. The assertion (b) follows again from (3.2).
¤

(3.7) Lemma. Let b1, . . . , br ∈ F be 2-independent in F and let T be as
before. Assume for a form λ ∈ ΩFM [X2]

λ ∧ db1 ∧ · · · ∧ dbr ∧ dT = 0

in ΩN(p). Then

a) If p ∈M [X2] and db1 ∧ · · · ∧ dbr ∧ dT 6= 0 in ΩN(p), there exist λ1, λ2 ∈
ΩFM [X2] with

λ ∧ db1 ∧ · · · ∧ dbr ∧ dT = (pλ1 + λ2 ∧ dp) ∧ db1 ∧ · · · ∧ dbr ∧ dT
in ΩFM [X2].

b) If p 6∈ M [X2] and db1 ∧ · · · ∧ dbr ∧ dT 6= 0 in ΩN(p), there exist λ1 ∈
ΩFM [X2] with

λ ∧ db1 ∧ · · · ∧ dbr ∧ dT = p2λ1 ∧ db1 ∧ · · · ∧ dbr ∧ dT
in ΩFM [X2].

c) If db1 ∧ · · · ∧ dbr ∧ dT = 0 in N(p), there exists t ∈ M [X2] with
degX t < degX p and db1 ∧ · · · ∧ dbr ∧ dT = db1 ∧ · · · ∧ dbr ∧ d(pt) or
= db1 ∧ · · · ∧ d(pt) ∧ · · · ∧ dbr ∧ dT for some 1 ≤ i ≤ r, this case only
occurs for p ∈M [X2].
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Proof. Let us first assume db1∧· · ·∧dbr∧dT 6= 0 in ΩN(p). Then b1, . . . , br, T̄
can be chosen as part of a 2-basis of N(p) and the assumption λ∧ db1∧ · · · ∧
dbr ∧ dT̄ = 0 implies (see (1.1))

λ =
r
∑

1

δi ∧ dbi + δ ∧ dT̄

with some forms δi, δ ∈ ΩN(p). Since λ ∈ Ω̄M [X2], one easily shows that the
forms δi, δ can be chosen in Ω̄FM [X2] too. Then (3.2) implies

λ =
r
∑

i=1

δi ∧ dbi + δ ∧ dT + pλ1 + λ2 ∧ dp

if p ∈ M [X2] and λ =
∑

δi ∧ dbi + δ ∧ dT + p2λ2 if p 6∈ M [X2], where λ1,
λ2 ∈ ΩFM [X2]. Taking the product with db1 ∧ · · · ∧ dbr ∧ dT we obtain a)
and b). Let us assume now db1 ∧ · · · ∧ dbr ∧ dT̄ = 0 in ΩN(p). We write
br+1 = T for the time being, and we choose (after reordering) a maximal
2-independent subset {b1, . . . , bj0} of {b1, . . . , br+1}. For example one could
have a relation T = br+1 =

∑

µ p
2
µbµ, where µ runs over the set of map

µ : {1, . . . , j0} → {0, 1} and pµ ∈ N(p), bµ =
∏j0

i=1 b
µ(i)
i . Then we can write

T =
∑

p2µbµ + p · t in N [X], with pµ, p, t ∈ N [X]. Since T, p2µ ∈ M [X2],
it follows p · t ∈ M [X2], and (3.1) implies p, t ∈ M [X2], or t = p · ` with
` ∈M [X2]. Thus we have

T =
∑

p2µbµ + p · t, p, t ∈M [X2]

or

T =
∑

p2µbµ + p2 · `, ` ∈M [X2]

and p 6∈ M [X2]. But in the last case we see that degX(p
2l) > degX T and

degX p
2
µbµ (since pµ can be chosen with degX pµ < degX p). This means that

p 6∈M [X2] never happen. Therefore

dT =
∑

p2µdbµ + d(pt)

with t ∈M [X2] and degX t < degX p. It follows

db1 ∧ · · · ∧ dbr ∧ dT = db1 ∧ · · · ∧ dbr ∧ d(pt).
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The same argument applies for the case that some bk (k 6= r + 1) is 2-
dependent of {b1, . . . , bj0}. We omit the details. ¤

(3.8) Lemma. Let p ∈ M [X2] be a monic irreducible polynomial in N [X].
Let u, v, λ ∈ ΩFM [X2] be such that

℘u+ dv = λ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT in ΩN(p)

where b1, . . . , bs−1 ∈ F ∗ and T = bsX
2 + T ′ as before (degX T

′ = 0). Then
there exist forms u1, u2, δ ∈ ΩFM [X2], fij, gij ∈ M [X2] with deg(fij) <
deg(p) and fijgij ≡ 1 ( mod p), such that

u =
∑

i

(gi1dfi1) ∧ · · · ∧ (gimdfim) + pu1 + u2 ∧ dp

+ δ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT

holds in ΩFM [X2].

Proof. If db1∧ · · ·∧dbs−1∧dT = 0 in Ωs
N(p), then ℘u = dv, and we conclude

from (2.15)

u =
∑

i

dfi1
fi1
∧ · · · ∧ dfim

fim

with certain fij ∈ N(p)∗.
Taking gij ∈ N [X] with gijfij ≡ 1 ( mod p), we obtain u =

∑

i gi1dfi1 ∧
· · · ∧ gisdfis. Since u ∈ ΩFM [X2] one can show that the fij and gij can be
chosen in M [X2], and we can now apply (3.2). Thus we can assume db1 ∧
· · · ∧ dbs−1 ∧ dT 6= 0 in ΩN(p), and hence db1, . . . , dbs−1, T are 2-independent
in N(p). We choose a 2-basis of F which contains {b1, . . . , bs−1} and we take
the constructed 2-basis of N(p) for the case p ∈M [X2] as indicated after the
proof of lemma (3.1). The excluded index i0 can be chosen 6= 1, . . . , s − 1.
Moreover we replace the next element bs by the image T̄ of T in N(p) and
we write bs for T̄ . Thus the new 2-basis of N(p) is now {b1, . . . , bs−1, bs =
T̄ , . . . , b̂i0 , . . . , bN , Xµ, µ 6= 1, . . . , s − 1}. We order this basis such that all
bi < Xµ for all µ and all i. In Σm,N(p) we choose the lexicographic ordering
and with respect to this ordering choose α minimal with α > γ for all γ with
γ(1) = 1, . . . , γ(s) = s. Hence if u ∈ Ωm

N(p),<α then there exists some δ with

u = δ ∧ db1 ∧ · · · ∧ dbs and δ in the image of ΩFM [X2]. We choose now
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β ∈ Σm,N(p) minimal with the property u ∈ ΩN(p),β. This means that in the
representation of u with respect to the above 2-basis of N(p), β corresponds
to the leading index of this representation. Since u comes from ΩFM [X2] we
see that bβ(i) ∈M [X2] for all i. Now we conclude that N(p)β(i) ⊂ M̄ [X2].

If β ≤ α we have u = δ∧db1∧· · ·∧dbs with δ in the image of ΩFM [X2], and
we are done by (3.2). Assume now α < β. Then we have λ∧db1∧ · · ·∧dbs ∈
ΩN(p),<β and hence

℘(u) ∈ ΩN(p),<β + dΩN(p).

Applying Kato’s lemma one gets

u =
da1
a1
∧ · · · ∧ dam

am
+ u′

in ΩN(p) with u
′ ∈ ΩN(p),<β, ai ∈ N(p)β(i) ⊂M [X2]. The form u

′

is contained
in ΩFM [X2] because u and also da1

a1
∧· · ·∧ dan

an
belong to ΩFM [X2]. We apply

now the same procedure to u′ until we get

u =
∑ dfi,1

fi,1
∧ · · · ∧ dfi,m

fi,m
+ v

with all fi,j ∈ M̄ [X2] and v ∈ ΩN(p),<α. By the remark above we conclude
v = δ ∧ db1 ∧ · · · ∧ dbs with δ in the image of ΩFM [X2]. All fi,j ∈ M [X2]
can be chosen with degX fi,j < degX p. Let gi,j ∈ M [X2] with fi,jgi,j ≡ 1(
mod p). Inserting in the above equation and applying again lemma (3.2) we
finally get the desired result. ¤
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4 The kernel Hn+1(F (φ)/F )

In this section we will prove the main result of this paper, namely

(4.1) Theorem. Let φ =¿ b1, . . . , bn À be an anisotropic bilinear Pfister
form over F . Then for m ≥ n

Hm+1(F (φ)/F ) = Ωm−n
F ∧ db1 ∧ · · · ∧ dbn.

If m < n, then Hm+1(F (φ)/F ) = 0.

Let us write during this section K for the function field F (φ) of the conic
φ = 0. In section 2 we have shown that w ∈ Hm+1(F (φ)/F ) holds if and
only if w satisfies the following equation in Ωm

L

w = ℘u+ dv + λ ∧ dT(4.2)

with u, v, λ ∈ ΩFM
′ ⊂ ΩL, where M ′ is the subfield F (X2

µ|µ ∈ Sn) of
L = F (Xµ|µ ∈ Sn), and ΩFM

′ denotes the subspace of ΩL generated by the
forms db, b ∈ F over the field M ′. Recall that T =

∑

µ∈Sn b
µX2

µ and Sn is the
set of all maps u : {1, . . . , n} → {0, 1} with at least one value µ(i) = 1. We
will develop a descent procedure, which starting from (4.2) will led us to an
equation w = ℘u+ dv + λ ∧ db1 ∧ · · · ∧ dbn with u, v, λ ∈ ΩF in ΩF .

Let us fix some integer s with 1 ≤ s ≤ n. Set M = F (X2
µ|µ ∈ Sn, µ 6=

1, . . . , s), X = Xs and let us consider the equations in ΩL

w = ℘u+ dv + λ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT(4.3)

with w ∈ ΩF , u, v, λ ∈ ΩFM(X2) and T = bsX
2+T ′, degX T

′ = 0 and T ′ is
a polynomial in X2

µ, µ 6= 1, . . . , s over F . The equation (4.3) for s = 1 is just
(4.2). Our strategy is to start with (4.2) and to push up the index s until we
get the factor db1 ∧ · · · ∧ dbn and then to eliminate the rest of the variables
until we get the desired equation w = ℘u0+ dv0+ λ0 ∧ db1 ∧ · · · ∧ dbn in ΩF ,
which is obviously the assertion of (4.1).

Any u ∈ ΩFM(X2) can be written in the form

u = u0 +
∑

p

up(4.4)

with u0 ∈ ΩFM [X2], up ∈ p−∞ΩFM [X2], p running over all irreducible
monic polynomials in N [X], where N = F (Xµ, µ 6= 1, . . . , s). Recall that
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p−∞ΩFM [X2] denotes the space of forms u/pr with u ∈ ΩFM [X2] and
degX u < degX(p

r) (see section 2). Fixing a 2-basis of F and N we have seen
that the operators ℘ and d leave invariant the spaces ΩFM [X2], p−∞ΩFM [X2]
(see (1.21)). Let us now insert in (4.3) the decompositions u = u0+

∑

up, v =
v0 +

∑

vp and λ = λ0 +
∑

λp. The terms λp ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT can
contribute eventually with an integral form (i.e. from ΩFM [X2]) , which we
will denote by Ep. Thus λp ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT + Ep ∈ p−∞ΩFM [X2].
Thus we conclude from (4.3), (1.20) and (1.21)

w = u
[2]
0 + u0 + dv0 + λ0 ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT +

∑

p

Ep(4.5)

0 = u[2]p + up + dvp + λp ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT + Ep.(4.6)

(4.7)Remark. As noticed in lemma (3.3), under the natural homomorphism

ΩFM [X2] −→ ΩN(p)

(p ∈ N [X] an irreducible polynomial), the operation u[2] behaves well, i.e.,

u[2]−u[2] is contained in dΩFM [X2] provided the computations are done with
respect to the 2-basis indicated there. In what follows we will frequently
reduce modulo p expressions of the form u[2] + dv and then we will lift back
to ΩFM [X2]. By the above remark, the differential form dv will eventually
change, but this will be of no importance for further computations. Because
of this reason we will not explicitely mention these changes.

Our next goal is to study the forms Ep ∈ ΩFM [X2]. To this end we will
distinguish three types of monic irreducible polynomials in N [X], namely

a) p 6∈M [X2] and db1 ∧ · · · ∧ dbs−1 ∧ dT 6= 0 in ΩN(p)

b) p ∈M [X2] and db1 ∧ · · · ∧ dbs−1 ∧ dT 6= 0 in ΩN(p)

c) db1 ∧ · · · ∧ dbs−1 ∧ dT = 0 in ΩN(p).

Case (a): We can write (see (4.6))

Ep =
ū[2]

p4r
+

ū

p2r
+
dv̄

p4r
+

λ̄

p4r
∧ db1 ∧ · · · ∧ dbs−1 ∧ dT
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with integral forms ū, v̄, λ̄ ∈ ΩFM [X2] , and r ≥ 0. For the time being, let
us write u, v, λ instead of ū, v̄, λ̄. Then in ΩFM [X2] we get

p4rEp = u[2] + p2ru+ dv + λ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT.(4.8)

Next we show that the form Ep can be absorbed by the first sum u
[2]
0 +

u0+ dv0+ λ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT in (4.5). Of course we can assume r ≥ 1
in (4.8). Taking (4.8) modulo p we obtain in ΩN(p)

u[2] + dv + λ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT = 0.(4.9)

Since p 6∈M [X2], lemma (3.4) (b) implies

u = δ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT + p2u1

in ΩFM [X2]. Inserting this expression in (4.8) we get

p4rEp = p4u
[2]
1 + p2r+2u1 + dv + λ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT(4.10)

with some new forms v and λ ∈ ΩFM [X2]. It follows dv = λ ∧ db1 ∧ · · · ∧
dbs−1 ∧ dT in ΩN(p) and lemma (3.5) implies

dv = δ1 ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT + p2dv1

in ΩFM [X2]. Thus (4.10) reads now

p4rEp = p4u
[2]
1 + p2r+2u1 + p2dv1 + δ′ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT

and hence in ΩN(p) we have

δ′ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT = 0.

From (3.6) (b) we conclude

δ′ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT = p2δ′′ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT

with δ′′ ∈ ΩFM [X2], since db1 ∧ · · · ∧ dbs−1 ∧ dT 6= 0 in ΩN(p). In this case
we get

p4rEp = p4u
[2]
1 + p2r+2u1 + p2dv1 + p2δ′′ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT

p4r−2Ep = p2u
[2]
1 + p2ru1 + dv1 + δ′′ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT.
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Again one obtains in ΩN(p)

dv1 = δ′′ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT

and it follows dv1 = δ′′′∧db1∧· · ·∧dbs−1∧dT+p2dv2 with δ
′′′, v2 ∈ ΩFM [X2].

Repeating the last argument we finally obtain a relation

p4r−4Ep = u
[2]
1 + p2r−2u1 + dv1 + λ1 ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT

in ΩFM [X2], i.e.

Ep = ℘(
u1
p2r−2

) + d(
v1
p4r−4

) +
λ1
p4r−4

∧ db1 ∧ · · · ∧ dbs−1 ∧ dT.

Thus we have reduced the number r by one in (4.8). Iterating this process
we finally arrive at a relation with r = 0, i.e.

Ep = ℘(u′0) + dv′0 + λ′0 ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT

with u′0, v
′
0, λ

′
0 ∈ ΩFM [X2]. This expression can be absorbed by the first

integral part of (4.5) and hence we have eliminated Ep from this sum.

Case (b): Thus we assume p ∈ M [X2] and db1 ∧ · · · ∧ dbs−1 ∧ dT 6= 0 in
ΩN(p). We can write

Ep =
u[2]

p2r
+
u

pr
+
dv

p2r
+

λ

p2r
∧ db1 ∧ · · · ∧ dbs−1 ∧ dT

with some integer r ≥ 1. Thus

p2rEp = u[2] + pru+ dv + λ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT(4.11)

with some forms u, v, λ ∈ ΩFM [X2]. In ΩN(p) we get

0 = u[2] + dv + λ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT.

From lemma (3.4) (a) we conclude

u = δ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT + pu1 + u2 ∧ dp

with δ, u1, u2 ∈ ΩFM [X2].
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We insert now this expression in Ep and obtain

p2rEp = (δ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT )[2] + prδ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT
+p2u

[2]
1 + pu

[2]
2 ∧ dp+ pr+1u1 + pru2 ∧ dp

+dv + λ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT
= p2u

[2]
1 + pu

[2]
2 ∧ dp+ pr+1u1 + pru2 ∧ dp

+dv + λ′ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT

with λ′ = λ + prδ + δ′, where δ′ is some form in ΩFM [X2] with (δ ∧ db1 ∧
· · · ∧ dbs−1 ∧ dT )[2] = δ′ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT . Thus in ΩN(p) it holds

dv = λ′ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT

and lemma (3.5) implies

dv = λ′′ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT + d(pv1 + v2 ∧ dp)

with λ′′, v1, v2 ∈ ΩFM [X2]. Therefore

p2rEp = p2u
[2]
1 + pu

[2]
2 ∧ dp+ pru2 ∧ dp+ pr+1u1

+pdv3 + v3 ∧ dp+ λ′′′ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT

where v3 = v1+ dv2 and λ
′′′ is some form in ΩFM [X2]. Taking this equation

modulo p we obtain λ′′′ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT = 0 in ΩN(p). Since db1 ∧
· · · ∧ dbs−1 ∧ dT 6= 0 in ΩN(p), we obtain from lemma (3.6) (a)

λ′′′ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT = (pλ1 + λ2 ∧ dp) ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT

with λ1, λ2 ∈ ΩFM [X2]. Therefore

p[p2r−1Ep + pu
[2]
1 + (u

[2]
2 + pr−1u2) ∧ dp

+pru1 + dv3 + λ1 ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT )]
= (v3 + λ2 ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT ) ∧ dp.

Lemma (3.4) implies

v3 + λ2 ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT = pv4 + v5 ∧ dp
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with v4, v5 ∈ ΩFM [X2]. It follows

p2r−1Ep + pu
[2]
1 + u

[2]
2 ∧ dp+ pr−1u2 ∧ dp+ pru1

+ pdv4 + dv5 ∧ dp+ λ3 ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT = 0

where λ3 = λ1 + dλ2. We get again in ΩN(p)

λ3 ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT = 0

and (3.6) (a) implies λ3∧db1∧ · · · ∧dbs−1∧dT = (pλ4+λ5∧dp)∧db1∧ · · · ∧
dbs−1 ∧ dT in ΩFM [X2]. Inserting this expression in the above equation we
obtain

p[p2r−2Ep + u
[2]
1 + pr−1u1 + λ4 ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT + dv4]

= (u
[2]
2 + pr−1u2 + dv5 + λ5 ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT ) ∧ dp

(4.12)

in ΩFM [X2]. Lemma (3.4) implies

u
[2]
2 + pr−1u2 + dv5 + λ5 ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT = 0

in ΩN(p).
We consider now two cases.

Case 1. r > 1. Then it holds in ΩN(p),

u
[2]
2 + dv5 + λ5 ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT = 0

and we can apply (3.4) (a) to obtain

u2 = λ6 ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT + pu3 + u4 ∧ dp

in ΩFM [X2]. Inserting this value of u2 in the above equation and using a
similar argument as in case (a) we easily see that the exponent of p in (4.10)
can be lowered. Therefore we are led to consider the next case.

Case 2. r = 1. Then we have ΩN(p),

u
[2]
2 + u2 + dv5 + λ5 ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT = 0.

44



For the time being we will set ws = db1 ∧ · · · ∧ dbs−1 ∧ dT . From lemma
(3.8) we conclude

u2 =
∑

i

∧

j

gijdfij + pu3 + u4 ∧ dp+ δ ∧ ws

with fij, gij ∈ M [X2], u3, u4, δ ∈ ΩFM [X2] as indicated by the lemma.
Therefore the right hand side of the equation (4.12) reads now

[

∑

i

∧

j

(gijdfij)
2 dfij
fij

+
∑

i

∧

j

gijfij
dfij
fij

+ p2u
[2]
3 + pu3 + dv5 + λ0 ∧ws] ∧ dp

with certain form λ0 ∈ ΩFM [X2].
Since gijfij ≡ 1( mod p), it follows

∏

j gijfij = 1 + phi with some

hi ∈M [X2] for all i. Thus (4.12) implies

p[Ep + u
[2]
1 + u1 + λ4 ∧ ws + dv4] = [(

∑

i

phi
dfi1
fi1
∧ · · · ∧ dfim

fim
)[2]

+
∑

phi
dfi1
fi1
∧ · · · ∧ dfim

fim
+ ℘(pu3) + dv5 + λ0 ∧ ws] ∧ dp.

But one easily sees that

℘(pu3) ∧ dp ≡ p℘(u3 ∧ dp)

℘

[

∑

i

phi ∧
dfi1
fi1
∧ · · · ∧ dfim

fim

]

∧ dp ≡ p℘

[

dp ∧
∑

i

hi
dfi1
fi1
∧ · · · ∧ dfim

fim

]

( mod dΩFM [X2]).
We bring both terms to the left side of the above equation and we get

p[Ep + ℘(u1 + u3 ∧ dp +
∑

i

hi
dfi1
fi1
∧ · · · ∧ dfim

fim
∧ dp)

+ λ4 ∧ ws + dv4] = [dv5 + λ0 ∧ ws] ∧ dp.
Thus

Ep = ℘(u1 + u3 ∧ dp+
∑

i

hi
dfi1
fi1
∧ · · · ∧ dfim

fim
∧ dp)

+d(v4 + v5 ∧
dp

p
) + (λ4 + λ0 ∧

dp

p
) ∧ ws.
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Notice that u1 + u3 ∧ dp +
∑

i hi
dfi1
fi1
∧ · · · ∧ dfim

fim
∧ dp contains denominators

all of whose prime factors in M [X2] (and in N [X]) are of degree < deg(p).
The other involved forms have at most p in the denominator. Using a similar
argument as done at the beginning of this section we get

Ep = ℘(u′0) + dv′0 + λ′0 ∧ ws +Gp +
∑

q deg(q)<deg(p)

Gq

with u′0, v
′
0, λ

′
0 ∈ ΩFM [X2] and integral forms Gp, Gq of the type

Gp = dvp + λp ∧ ws
Gq = ℘(uq) + dvq + λq ∧ ws

where vp, λp ∈ 1
p
ΩFM [X2] and uq, vq, λq ∈ q−∞ΩFM [X2] if deg(q) < deg(p).

Since the forms Gq have denominators of degree < deg(p) and are of the
same type as Eq, we can add them to the Eq’s, so that we forget then now.
Let us consider Gp. Let us write

vp =
v′

p2
, λp =

λ′

p
with v′, λ′ ∈ ΩFM [X2].

Thus Gp =
dv′

p2
+ λ′

p
∧ ws and hence

p2Gp = dv′ + pλ ∧ ws

holds in ΩFM [X2]. Thus dv′ = 0 in ΩN(p). Using Cartier’s theorem (see [ Ca]
or section 1) we can write v′ = A[2] + dB in ΩN(p). Since v′ ∈ Ω̄FM [X2] =
Image of ΩFM [X2] in ΩN(p), we easily see that B also can be chosen in
Ω̄FM [X2]. Therefore in ΩFM [X2] (see (3.2))

v′ = A[2] + dB + pv1 + v2 ∧ dp

with v1, v2 ∈ ΩFM [X2]. It follows dv′ = d(pv1 + v2 ∧ dp) = d(p(v1 + dv2)) =
d(pv′1) where v

′
1 = v1 + dv2. Therefore in ΩFM [X2]

p[pGp + dv′1 + λ ∧ ws] = v′1 ∧ dp

Lemma (3.4) implies v′1 = pv2 + v3 ∧ dp in ΩFM [X2] and hence after
replacing v′1 in the above equation it follows

pGp = pdv2 + dv3 ∧ dp+ λ ∧ ws.
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Thus λ∧ws = 0 in ΩN(p). Lemma (3.6) implies λ∧ws = (pλ1+λ2∧dp)∧ws
in ΩFM [X2] and therefore

pGp = pdv2 + dv3 ∧ dp+ pλ1 ∧ ws + λ2 ∧ dp ∧ ws

p[Gp + dv2 + λ1 ∧ ws] = (dv3 + λ2 ∧ ws) ∧ dp.

We apply again (3.4) and obtain dv3 + λ2 ∧ws = pv4 + v5 ∧ dp in ΩFM [X2].
Hence in ΩN(p) it holds dv3 = λ2 ∧ ws. Applying (3.5) we obtain dv3 =
δ ∧ ws + d(pv6 + v7 ∧ dp). This implies

p[Gp + dv2 + λ1 ∧ ws] = pdv6 ∧ dp+ δ′ ∧ ws ∧ dp

with δ′ = λ2 + δ. Lemma (3.4) implies δ′ ∧ ws = pλ3 + λ4 ∧ dp in ΩpM [X2].
Hence δ′∧ws∧dp = pλ3∧dp. But we are assuming that ws 6= 0 in ΩN(p). Thus
we easily conclude that there exist some λ′3 ∈ ΩFM [X2] with δ′ ∧ ws ∧ dp =
pλ′3 ∧ ws ∧ dp. Inserting this in the above relation we get

p[Gp + dv2 + λ1 ∧ ws] = pdv6 ∧ dp+ pλ′3 ∧ ws ∧ dp

Gp = d(v2 + v6 ∧ dp) + (λ1 + λ′3 ∧ dp) ∧ ws

in ΩFM [X2]. Thus we also get rid of Gp in the equation for Ep.

Case (c). We assume db1 ∧ · · · ∧ dbs−1 ∧ dT = 0 in ΩN(p). Thus we assume
now p ∈M [X2]. In ΩFM [X2] we can write

p2hEp = u[2] + phu+ dv + λ ∧ ws(4.13)

with h ≥ 1, with u, v, λ ∈ ΩFM [X2] and ws = db1 ∧ · · · ∧ dbs−1 ∧ dT . We
claim that there is t ∈M [X2] , degX t < degX p with

t2p2h−2Ep = u′[2] + tph−1u′ + dv′ + λ′ ∧ ws(4.14)

with u′, v′, λ′ ∈ ΩFM [X2].
From (4.13) it is clear that we have reduced the exponent of p in the

denominators of Ep at the cost that we increase the number of terms of
type Eq but with degX(q) < degX(p). Hence, iterating this process and
using partial fractions decompositions, we can finally eliminate Ep from the
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original equation (4.5). Of course we have during this process to modify the
other terms Eq for irreducibles q with degX(q) < degX(p).

The assumption ws = db1∧· · ·∧dbs−1∧dT = 0 in ΩN(p) implies (see (3.7)
(c))

ws = db1 ∧ · · · ∧ dbs−1 ∧ d(pt)

or

ws = db1 ∧ · · · ∧ dbi−1 ∧ d(pt) ∧ dbi+1 ∧ · · · ∧ dbs−1 ∧ dT

with t ∈ M [X2], degX t < degX p, and some i, 1 ≤ i ≤ s − 1. Let us write
ws = ws−1 ∧ d(pt) where ws−1 denotes db1 ∧ · · · ∧ dbs−1 or db1 ∧ · · · ∧ î∧ · · · ∧
dbs−1 ∧ dT . We will assume ws−1 6= 0 in ΩN(p), and we will omit the proof
in the case ws−1 = 0, which can be treated similarly. Since we can assume
h ≥ 1, we get from (4.13)

u[2] + dv = 0

in ΩN(p). It follows u = 0 in ΩN(p) and hence u = pu1 + u2 ∧ dp with
u1, u2 ∈ ΩFM [X2] (see (3.2)). Then

p2hEp = p2u
[2]
1 + pu

[2]
2 ∧ dp+ ph+1u1 + phu1 ∧ dp+ dv + λ ∧ ws.

This implies dv = 0 in ΩN(p) and hence dv = d(pv1) with some v1 ∈
ΩFM [X2] (see proof of case (2) above). Replacing this value of dv in the
above equation it follows

p[p2h−1Ep + pu
[2]
1 + u

[2]
2 ∧ dp+ phu1 + ph−1u2 ∧ dp

+dv1 + λ ∧ ws−1 ∧ dt] = (v1 + tλ ∧ ws−1) ∧ dp.

Lemma (3.4) implies

v1 = tλ ∧ ws−1 + pv2 + v3 ∧ dp

with v2, v3 ∈ ΩFM [X2]. Thus

p[p2h−2Ep + u
[2]
1 + ph−1u1 + dv2] =

tdλ ∧ ws−1 + [u
[2]
2 + ph−1u2 + dv3] ∧ dp.
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Hence

tdλ ∧ ws−1 = 0

in ΩN(p). Since degX t < degX p, it follows t 6= 0 in N(p) and we get

dλ ∧ ws−1 = 0.

This implies dλ ∧ ws−1 = d(pλ1) ∧ ws−1 in ΩF [X
2]. Therefore

p[p2h−2Ep + u
[2]
1 + ph−1u1 + dv2 + tdλ1 ∧ ws−1]

= [u
[2]
2 + ph−1u2 + dv3 + tλ1 ∧ ws−1] ∧ dp.

Lemma (3.4) implies

u
[2]
2 + ph−1u2 + dv3 = tλ1 ∧ ws−1(4.15)

in ΩN(p). Thus we are led to consider two cases

a) h > 1. Then

u
[2]
2 + dv3 = tλ1 ∧ ws−1

implies (see (3.4))

u2 = δ ∧ ws−1 + pu3 + u4 ∧ dp

with δ, u3, u4 ∈ ΩFM [X2]. Inserting this expression for u2 in the equation
for Ep we obtain

p[p2h−2Ep + u
[2]
1 + ph−1u1 + dv2 + tdλ1 ∧ ws−1 + pu

[2]
3 ∧ dp+ ph−1u3 ∧ dp]

= [(δ ∧ ws−1)[2] + ph−1δ ∧ ws−1 + dv3 + tλ1 ∧ ws−1] ∧ dp.

It follows

(δ ∧ ws−1)[2] + dv3 + tλ1 ∧ ws−1 ∈ ker[Ωm
FM [X2]→ Ωm

N(p)]

which means that

dv3 = z ∧ ws−1 + pu4 + u5 ∧ dp
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in Ωm
FM [X2]. This relation says dv3 ∈ Ωm−s+1

N(p) ∧ ws−1.
We apply now lemma (1.13) and remark (1.14), and we obtain in Ωm

FM [X2]

dv3 =

(

∑

µ6=1
bµzµ + b1dB

)

∧ ws−1 + d(pu4 + u5 ∧ dp)

with zµ, B ∈ ΩFM [X2], dzµ = 0 for all µ. Notice that the form (
∑

µ 6=1 b
µzµ+

b1dB) ∧ ws−1 is exact, i.e. equal to some dH with H ∈ ΩFM [X2]. Inserting
this in the above equation it follows

p[p2h−2Ep + u
[2]
1 + ph−1u1 + dv2 + tdλ1 ∧ ws−1 + (pu

[2]
3 + ph−1u3 + du4) ∧ dp]

= [(δ ∧ ws−1)[2] + ph−1δ ∧ ws−1 + tλ1 ∧ ws−1 + dH] ∧ dp.

Let us denote by A the expression inside the parenthesis of the right
hand side of this equation, which is of the form A = B ∧ ws−1, with some
B ∈ ΩFM [X2]. The equation p[ ] = B ∧ ws−1 ∧ dp implies by lemma (3.4)
B ∧ ws−1 = 0 in ΩN(p). Now we apply lemma (3.6) to conclude B ∧ ws−1 =
(pµ1+µ2∧dp)∧ws−1 in ΩFM [X2]. Inserting in the above relation we obtain
then that we can assume B ∧ ws−1 = pµ1 ∧ ws−1 with µ1 ∈ ΩFM [X2]. Thus
let us write pB ∧ ws−1 instead of B ∧ ws−1. Multiplying the above equation
by t and using tdp = d(pt) + pdt as well as ws−1 ∧ d(pt) = ws, we get

p2h−2Ep + u
[2]
1 + ph−1u1 + dv2 + tdλ1 ∧ ws−1 + (pu

[2]
3 + ph−1u3 + du4) ∧ dp

=
pA ∧ dt
pt

+
pB ∧ ws−1

pt
= A ∧ dt

t
+
B

t
∧ ws−1.

This equation implies

Ep = ℘

(

u1
ph−1

)

+ ℘

(

u3 ∧ dp
ph−1

)

+ d

(

v2 + u2 ∧ dp
p2(h−1)

)

+℘

(

δ ∧ ws−1
ph−1

∧ dt
t

)

+ d

(

H

p2(h−1)
∧ dt
t

)

+
tdλ1 ∧ ws−1 + tλ1 ∧ ws−1 ∧ dt

t

p2h−2
+

1

p2h−2t
B ∧ ws.

50



Notice tdλ1 ∧ ws−1 + λ1 ∧ ws−1 ∧ dt = d(tλ1 ∧ ws−1), so that

Ep = ℘

(

u1
ph−1

+
u3 ∧ dp
ph−1

+
δ ∧ ws−1 ∧ dt

ph−1t

)

+d

(

v2 + u4 ∧ dp
p2h−2

+
(tλ1) ∧ ws−1

p2h−2
+
H ∧ dt
p2h−2t

)

+
B

p2h−2t
∧ ws.

Thus

Ep = ℘

(

u′

ph−1t

)

+ d

(

v′

p2(h−1)t

)

+
λ′

tp2h−2
∧ ws

with forms u′, v′, λ′ ∈ ΩFM [X2]. Using partial fraction decomposition of the
forms u′/(ph−1t), v′/(p2(h−1)t), λ′/(p2h−2t), we see that the exponent h of p in
equation (4.13) can be reduced by one, although expressions for polynomials
q of lower degree of the same type can appear, which will be absorbed by the
corresponding Eq. Thus we are led to consider the case

(b) h = 1. Then we have (see (4.15))

u
[2]
2 + u2 + dv3 = tλ1 ∧ ws−1(4.16)

in ΩN(p). We can now apply lemma (3.7) to conclude

u2 =
∑

i

∧

j

gijdfij + pv1 + v2 ∧ dp+ δ ∧ ws−1

with v1, v2, δ ∈ ΩFM [X2], fij, gij ∈ M [X2], degX fij < degX p, fijgij =
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1 + hijp in M [X2]. Next we compute ℘(
∑

i

∧

j gijdfij). We have

℘(
∑

i

∧

j

gijdfij) ≡
[

∑

i

∧

j

gijfij)
dfij
fij

][2]

+
∑

i

∧

j

gijfij
dfij
fij

≡
∑

i

(
∏

j

(gijfij)
2 +

∏

j

gijfij)
∧

j

dfij
fij

≡
∑

i

(
∏

j

g2ijfij +
∏

j

gij)
∧

j

dfij

≡
∑

i

∏

j

gij(1 +
∏

j

(1 + phij))
∧

j

dfij

≡
∑

i

p
∏

j

gij · hi
∧

j

dfij

mod dΩFM [X2], with certain hi ∈M [X2]. Thus we have obtained

℘(
∑

i

∧

j

gijdfij) = p
∑

i

gi
∧

j

dfij mod dΩFM [X2]

with gi ∈M [X2]. Let us insert u2 in (4.15). According to the above compu-
tation we obtain in ΩFM [X2]

℘(δ ∧ ws−1) + dv3 + tλ1 ∧ ws−1 = pu4 + u5 ∧ dp
and this implies

dv3 = λ ∧ ws−1
in ΩN(p), with some form λ ∈ Ω̄FM [X2] ⊂ ΩN(p). From lemma (1.13) and
remark (1.14) we obtain in ΩFM [X2]

dv3 =

(

∑

µ6=1
bµzµ + b1dB

)

∧ ws−1 + d(pu4)

with zµ, B ∈ ΩFM [X2], dzµ = 0 for all µ. Notice that the form (
∑

µ 6=1 b
µzµ+

b1dB)∧ws−1 is exact, i.e. equal to some dH with H ∈ ΩFM [X2]. Therefore

p[Ep + ℘u1 + dv2 + tdλ1 ∧ ws−1] = [℘(
∑

i

∧

j

gijdfij + pv1 + δ ∧ ws−1) +
(

∑

µ6=1
bµzµ + b1dB

)

∧ ws−1 + d(pu4) + tλ1 ∧ ws−1] ∧ dp.
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After dividing by p, we are led to consider the following expressions.

a) ℘(pv1) ∧ dp

p
= ℘(pv1 ∧ dp

p
) = ℘(v1 ∧ dp) mod dΩFM [X2]

b)

℘
∑

i

∧

j

gijdfij ∧
dp

p
= ℘

(

∑

i

∧

j

gijfij
dfij
fij
∧ dp
p

)

= ℘

(

∑

i

∧

j

(1 + phij)
dfij
fij
∧ dp
p

)

= ℘

(

∑

i

∧

j

dfij
fij
∧ dp
p

+
∑

i

Hi

∧

j

dfij
fij
∧ dp

)

= ℘

(

∑

i

Hi

∧

j

dfij
fij
∧ dp

)

mod dΩFM [X2]

with certain polynomials Hi ∈M [X2].

c) ℘(δ∧ws−1)∧dpp = ℘(δ∧ws−1∧dtt )+℘(δ∧ws−1∧
d(pt)
pt

) mod dΩFM [X2]

d) tλ1 ∧ws−1 ∧ dp

p
= λ1 ∧ws−1 ∧ tdp

p
= λ1 ∧ws−1 ∧ d(tp)+pdt

p
= tλ1 ∧ws−1 ∧

d(tp)
tp

+ λ1 ∧ ws−1 ∧ dt (recall ws = ws−1 ∧ d(pt))

e)
(

∑

µ6=1 b
µzµ + b1dB

)

∧ws−1∧ dp

p
=
(

∑

µ6=1 b
µzµ + b1dB

)

∧ws−1∧ d(pt)
pt

+
(

∑

µ6=1 b
µzµ + b1dB

)

∧ ws−1 ∧ d(t)
t

Thus we get

Ep = ℘(u1 + v1 ∧ dp) + d(v2 + u4 ∧ ws−1 ∧ dp)

+℘(
∑

i

Hi

∧

j

dfij
fij
∧ dp) + d(tλ1 ∧ ws−1)

+℘(δ ∧ ws−1) ∧
dt

t
+ ℘(δ ∧ ws−1) ∧

d(pt)

pt
+
λ1
p
∧ ws

Ep = ℘

(

u1 + v1 ∧ dp+
∑

i

Hi

∧

j

dfij
fij
∧ dp+ δ ∧ ws−1 ∧

dt

t

)

+d(v2 + u4 ∧ ws−1 ∧ dp+ tλ1 ∧ ws−1) + α3 ∧ ws

53



where ℘(δ ∧ ws−1) ∧ d(pt)
pt

+ λ1

p
∧ ws = α3 ∧ ws, α3 being a form of the type

µ/pt with µ ∈ ΩFM [X2], i.e. α3 has a denominator containing p at most
in the first power, and all other prime factors are of degree (in X) less than
deg(p). Thus we have

Ep = ℘(α1) + d(α2) + α3 ∧ ws
where α1, α2 have numerator in ΩFM [X2] and denominators with prime fac-
tors of degree less than deg(p). In particular the above equation shows that
α3 ∧ws is also a form of the type β/q where q is a product of prime polyno-
mials of degree less than p in M [X2]. We claim

α3 ∧ ws = α ∧ ws(4.17)

where α is a form of the type γ/q where q is a product of irreducible poly-
nomials of degree < deg(p) contained in M [X2]. Once we have shown this
claim, we see that we can get rid of Ep in the equation (4.5). Thus we must
show (after scaling (4.16) with a convenient polynomial q).

(4.18) Lemma. Let λ be a form in 1
p
ΩFM [X2] such that λ∧ws ∈ ΩFM [X2].

Then there is some form λ′ ∈ ΩFM [X2] with

λ ∧ ws = λ′ ∧ ws.

Proof. Set λ = p−1λ0 with λ0 ∈ ΩFM [X2]. We can obviously assume that
degX λ0 < degX p. We write dT = ksdbs+dT

′, with degX ks = 2, degX T
′ = 0

and dT ′ not containing dbs. Since ws = db1∧· · ·∧dbs−1∧dT , we may assume
that λ0 is only generated by forms dbj, j ≥ s. Set λ0 = λs ∧ dbs + λ′s with
λs, λ

′
s generated by forms dbj, j > s. Then

λ ∧ ws = p−1λ0 ∧ db1 ∧ · · · ∧ dbs−1 ∧ (ksdbs + dT ′)

= p−1db1 ∧ · · · ∧ dbs−1 ∧ dbs ∧ (λs ∧ dT ′ + ksλ
′
s)

+p−1db1 ∧ · · · ∧ dbs−1 ∧ λ′s ∧ dT ′.
Because of the above choices, both summands do not interfere with each
other, so that both must be integral, since λ ∧ ws is integral. In particular

p−1db1 ∧ · · · ∧ dbs−1 ∧ λ′s ∧ dT ′ ∈ ΩFM [X2].
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Since degX λ
′
s < degX p and degX T

′ = 0, it follows

db1 ∧ · · · ∧ dbs−1 ∧ λ′s ∧ dT ′ = 0.

But λ′s∧dT ′ is generated only by differentials dbj, j ≥ s, so that we obtain
λ′s ∧ dT ′ = 0. It follows λ′s = δ ∧ dT ′ with some form δ ∈ ΩFM [X2], and
degX δ < degX p. Therefore

λ ∧ ws = p−1db1 ∧ · · · ∧ dbs ∧ (λs ∧ dT ′ + ksδ ∧ dT ′)

= p−1db1 ∧ · · · ∧ dbs ∧ (λs + ksδ) ∧ dT ′

Since db1 ∧ · · · ∧ dbs ∧ dT ′ does not contain X we easily see that p divides
λs + ksδ i.e. λs + ksδ = p · µ with µ ∈ ΩFM [X2]. Hence

λ0 = (ksδ + pµ) ∧ dbs + δ ∧ dT ′

= δ ∧ dT + pµ ∧ dbs.

This implies

λ ∧ ws = p−1λ0 ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT

= p−1pµ ∧ dbs ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT

= µ ∧ ws

with µ ∈ ΩFM [X2]. This proves the claim. ¤

Therefore, using this descent procedure we have shown the following re-
sult.

(4.19) Proposition. If w ∈ Ωn
F satisfies an equation

w = ℘u+ dv + λ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT

with u, v, λ ∈ ΩFM(X2) and T as before, then w satisfies an equation

w = ℘u′ + dv′ + λ′ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT
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with u′, v′, λ′ ∈ ΩFM [X2].

(4.20) Lemma. Let w ∈ Ωn
F be such that there exist u, v, λ ∈ ΩFM [X2] with

w = ℘u+ dv+ λ∧ db1 ∧ · · · ∧ dbs−1 ∧ dT , T = bsX
2+ T ′, degX T

′ = 0. Then
there exist u′, v′, λ′ ∈ ΩFM with

w = ℘u′ + dv′ + λ′ ∧ db1 ∧ · · · ∧ dbs−1 ∧ dbs ∧ dT ′.

Proof. Set degX u = 2h, degX v = 2k, degX λ = 2`. We consider the follow-
ing cases:

a) 4h ≥ 2k. Then the coefficient of X4h in ℘u + dv + λ ∧ ws (ws =

db1 ∧ · · · ∧ dbs−1 ∧ dT ) is the form u
[2]
2h + dv4h + λ4h−2 ∧ ws−1 ∧ dbs, where

ws−1 = db1 ∧ · · · ∧ dbs−1. Then we must have

u
[2]
2h + dv4h + λ4h−2 ∧ ws−1 ∧ dbs = 0

if h ≥ 1. Here we have used the following notation: u = u0 + u2X
2 + · · · +

u2hX
2h, with ui ∈ ΩFM . Then applying the Cartier operator

0 = u2h + C(λ4h−2 ∧ ws−1 ∧ dbs).

From lemma (1.12) we obtain in ΩF (Xµ)

u2h = µ ∧ ws−1 ∧ dbs.

Since u2h ∈ ΩFM , it is easy to conclude that we can choose µ ∈ ΩFM .
Therefore

u = u0 + u2X
2 + · · ·+ u2hX

2h

= u0 + · · ·+ µ ∧ ws−1 ∧ dbsX2h

= u0 + · · ·+ µ ∧ ws−1 ∧ (dT + dT ′)X2h−2

= u0 + · · ·+ u′2h−2X
2h−2 + µX2h−2 ∧ ws−1 ∧ dT
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where u′2h−2 = u2h−2 + µ ∧ dT ′. The term µX2h−2 ∧ws−1 ∧ dT can be added
to λ∧ss−1∧dT replacing λ by λ+µX2h−2. Thus we have lowered the degree
of u. Iterating this procedure we are led to consider the following case

b) 4h < 2k. It follows 2` ≤ 2k − 2, and the coefficient of X2k is dv2k +
λ2k−2 ∧ ws−1 ∧ dbs. Therefore if k ≥ 1, we must have

dv2k + λ2k−2 ∧ ws−1 ∧ dbs = 0.

Then according (1.13) there exist forms zµ ∈ ΩFM and B ∈ ΩFM such that

dv2k =
∑

µ6=1s−1

[bµ(zµ,2 + bszµ,3) + b1s−1(z1 + bsdB)] ∧ ws−1 ∧ dbs

with all zµ closed, and zµ,2, zµ,3, z1, B not containing bs in the 2-expansion
of their coefficients. The term bµzµ,2 ∧ ws−1 is exact for all µ 6= 1s−1 i.e.
bµzµ,2 ∧ws−1 ∈ dΩFM . Also bsb

µ ∧ws−1 ∈ bsdΩFM . The form b1s−1z1 ∧ws−1
is closed and hence contained in dΩFM + (ΩFM)[2] and bsb

1s−1dB ∧ ws−1 ∈
bsdΩFM .

Putting all this together, we obtain

dv2k = (A[2] + dC + bsdE) ∧ dbs

with forms A,C,E ∈ ΩFM , which moreover are multiples of ws−1. From

λ2k−2 ∧ ws−1 ∧ dbs = (A[2] + dC + bsdE) ∧ dbs

we infer

λ2k−2 ∧ ws−1 = A[2] + dC + bsdE + F ∧ dbs

with some F ∈ ΩFM , which can be chosen as a multiple of ws−1, since F
does not have terms containing dbs and F ∧ dbs ∈ 〈ws−1〉. Therefore

λ ∧ ws−1 = (λ0 + λ2X
2 + · · ·+ λ2k−2X

2k−2) ∧ ws−1

λ ∧ ws−1 ∧ dT = (λ0 + λ2X
2 + · · ·+ λ2k−4X

2k−4) ∧ ws−1 ∧ dT

+X2k−2(A[2] + dC + bsdE + F ∧ dbs) ∧ dT.
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The terms X2k−2A[2] ∧ dT and X2k−2dC ∧ dT are exact, and hence can be
absorbed by dv without increasing the degree of v. Now

X2k−2bsdE ∧ dT = X2k−4(X2bs)dE ∧ dT

= X2k−4(T + T ′)dE ∧ dT

= d(X2k−4TE ∧ dT ) +X2k−4T ′dE ∧ dT.

The first summand can be added to dv without increasing the degree of
v. Since dE is a multiple of ws−1, it follows that the second summand in this
expression is contained in X2k−4ΩFM ∧ws−1∧dT and hence it can be added
to the term λ2k−4 ·X2k−4 of degree 2k− 4 in λ∧ws−1 ∧ dT . Finally the term
X2k−2F ∧dbs∧dT = X2k−4F ∧dT ′∧dT is contained in X2k−4ΩFM ∧ws−1∧
dT = X2k−4ΩFM ∧ ws, because F is a multiple of ws−1, and therefore this
term is absorbed by the term of degree 2k − 4 in λ ∧ ws.

This shows that can assume deg λ ≤ 2k − 4. But this implies dv2k = 0,
i.e. deg v < 2k. Thus we have lowered the degree of v, and iterating this
procedure we come again to the case a).

Combining the procedures of cases a) and b) we finally arrive at an equa-
tion

w = u[2] + u+ dv + λ ∧ ws−1 ∧ dT

with u, v, λ ∈ ΩFM . Since λ∧ws−1∧dT = X2λ∧ws−1∧dbs+λ∧ws−1∧dT ′, we
see thatX2λ∧ws−1∧dbs ∈ ΩFM , and this is possible only if λ∧ws−1∧dbs = 0.
We have assumed that λ does not contain terms with db1, . . . , dbs−1, so that
it followsλ = λ′ ∧ dbs in ΩFM . Thus

w = ℘u+ dv + λ′ ∧ db1 ∧ · · · ∧ dbs ∧ dT

and this proves the lemma. ¤

We are now ready to prove the main result of this paper.

Proof of Theorem (4.1) Let us introduce the following subfields of L =
F (Xµ|µ ∈ Sn) and polynomials
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L0 = L = F (Xµ|µ ∈ Sn)

T0 = T =
∑

µ∈Sn

bµX2
µ

M0 = M = F (X2
µ|µ ∈ Sn)

L1 = F (Xµ|µ 6= e1), e1 = (1, 0, . . . , 0)

T1 =
∑

µ6=e1

bµX2
µ

M1 = F (X2
µ|µ 6= e1)

...

Lj = F (Xµ|µ 6= e1, . . . , ej), ei = (0, . . . 1, . . . , 0)

Tj =
∑

µ6=e1,... ,ej

bµX2
µ

Mj = F (X2
µ|µ 6= e1, . . . , ej)

where j = 1, 2, . . . , n. We have Lj−1 = Lj(Xj),Tj+1 = Tj+bj+1X
2
j+1 ∈Mj+1.

Thus equation (4.2) corresponds to (4.3) with s = 1, i.e. w = ℘u+ dv +
λ∧dT0 with w ∈ ΩF , u, v, λ ∈ ΩFM0. The above process implies an equation
w = ℘u′ + dv′ + λ′ ∧ dT0 with u′, v′, λ′ ∈ ΩFM1[X

2
1 ]. Lemma (4.19) implies

now

w = ℘u′′ + dv′′ + λ′′ ∧ db1 ∧ dT1

with u′′, v′′, λ′′ ∈ ΩFM1. We continue with this process for s = 2, . . . , n − 1
until we get forms ū, v̄, λ̄ ∈ ΩFMn−1 such that

w = ℘ū+ dv̄ + λ̄ ∧ db1 ∧ · · · ∧ dbn−1 ∧ dTn−1.
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But we have

db1 ∧ · · · ∧ dbn−1 ∧ dTn−1 = db1 ∧ · · · ∧ dbn−1 ∧ kndbn

where kn = b−1n
∑

µ(n)=1 b
µX2

µ. Therefore we obtain an equation

w = ℘ū+ dv̄ + λ̄′ ∧ db1 ∧ · · · ∧ dbn(4.21)

in ΩFMn−1. We can now get rid of the remaining variables just by comparing
coefficients. Suppose namely that k is a field, K = k(X) a pure transcen-
dental extension in one variable of k, w ∈ Ωk and that there is a relation

w = ℘u+ dv + λ ∧ wn(4.22)

in Ωk(X
2), where wn is now defined over k. We decompose u, v, λ in partial

fractions

u = u0 +
∑

up

v = v0 +
∑

vp

λ = λ0 +
∑

λp

with u0, v0, λ0 ∈ Ωk[X
2], up, vp, λp ∈ p−∞Ωk[X

2]. Since the operators ℘ and
d respect these decomposition, we conclude from (4.21) that

w = ℘u0 + dv0 + λ0 ∧ db1 ∧ · · · ∧ dbn

in Ωk[X
2]. Letting X = 0, we obtain w = ℘ū0 + dv̄0 + λ̄0 ∧ db1 ∧ · · · ∧ dbn in

Ωk. Applying this argument to the equation (4.21) we conclude

w = ℘α + dβ + γ ∧ db1 ∧ · · · ∧ dbn

with α, β, γ ∈ ΩF . This finishes the proof of the theorem. ¤
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5 Quadratic forms and differential forms

We review briefly in this section for the sake of completeness some basic nota-
tions and results from quadratic form theory and its relations with differential
forms over fields of characteristic two. Our basic references will be [ A-Ba 1],
[ Ba 1], [ Ka 1] and [ Sa]. Let F be a field of characteristic two. We denote
by [a, b] the binary nonsingular quadratic form ax2+xy+by2 (a, b ∈ F ). Any
non singular quadratic form over F is of the form ⊥ni=1 [ai, bi], (ai, bi ∈ F ),
where ⊥ means orthogonal sum. The form [0, 0] is the hyperbolic plane and
any orthogonal sum⊥ [0, 0] is called a hyperbolic space. Two quadratic forms
q1, q2 are called equivalent (q1 ∼ q2) if H1 ⊥ q1 ' H2 ⊥ q2, where H1, H2 are
hyperbolic spaces. A form q is called isotropic if there is a nonzero vector
x with q(x) = 0, otherwise q is called anisotropic. The set of equivalence
classes of anisotropic quadratic forms over F form the Witt-group Wq(F )
(with respect to orthogonal sums). Respectively, we denote by 〈a〉 the one
dimensional symmetric bilinear form axy (a ∈ F ∗) and by 〈a1, . . . , an〉 the
orthogonal sum 〈a1〉 ⊥ . . . ⊥ 〈an〉. Let W (F ) be the Witt ring of F , i.e.
the ring of classes of non singular symmetric bilinear forms over F . Then
Wq(F ) is a W (F )-module via the operation b ⊗ q(x ⊗ y) = b(x, x) · q(y)
(see [ Ba 1], [ Sa]). The maximal ideal I ⊂ W (F ) of even dimensional bi-
linear forms is additively generated by the 1-Pfister forms 〈1, a〉, a ∈ F ∗,
so that the n-power In is additively generated by the n-fold Pfister forms
¿ a1, . . . , an À= 〈1, a1〉 ⊗ · · · ⊗ 〈1, an〉. We get the submodules InWq(F ) of
Wq(F ), n ≥ 0, which are additively generated by the quadratic n-fold Pfister
forms¿ a1, . . . , an; b]] =¿ a1, . . . , an À ⊗[1, b] , where [1, b] = x2+xy+by2

is a 0-fold Pfister form. Thus we have the filtration W (F ) ⊃ I ⊃ I2 ⊃ · · ·
and Wq(F ) ⊃ IWq(F ) ⊃ I2Wq(F ) ⊃ · · · . In [ Ka 1] it is shown that there
are a natural isomorphisms (see section 2 for the definition of νF (n) and
Hn+1(F ))

α : νF (n)
∼→ InF/I

n+1
F(5.1)

β : Hn+1(F )
∼→ InWq(F )/I

n+1Wq(F )(5.2)

given on generators by

α
(

dx1

x1
∧ · · · ∧ dxn

xn

)

= ¿ x1, . . . , xn À mod In

β
(

bdx1

x1
∧ · · · ∧ dxn

xn

)

= ¿ x1, . . . , xn; b]] mod InWq(F ).
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If L/F is any field extension, any quadratic form q (or bilinear form b)
over F can be viewed as a form over L, which we denote by qL ( or bL).
The natural homomorphisms Wq(F ) → Wq(L), resp. W (F ) → W (L) are
compatible with the above isomorphisms, i.e.

νL(n) InL/I
n+1
L

∼−→

νF (n) InF/I
n+1
F

∼−→

? ?

resp.

Hn+1(L) InWq(L)/I
n+1Wq(L)

∼−→

Hn+1(F ) InWq(F )/I
n+1Wq(F )

∼−→

? ?

In particular the main isomorphism (4.1) can be restated in terms of
quadratic forms as follows.

(5.3) Theorem. Let φ =¿ b1, . . . , bn À be an anisotropic bilinear n-fold
Pfister form over F . Then

ker

[

InWq(F )

In+1Wq(F )
→ InWq(F (φ))

In+1Wq(F (φ))

]

= {φ⊗ [1, b]|b ∈ F}.

Let p =¿ b1, . . . , bn; b]] be an anisotropic quadratic n -fold Pfister form
over F . Let F (p) be the function field of the quadric {p = 0} over F . In
[ A-Ba 2] we have shown that (5.3) implies the following result, whose proof
will be given here for the sake of completeness.

(5.4) Theorem. Let p be as above. Then

ker

[

InWq(F )

In+1Wq(F )
→ InWq(F (p))

In+1Wq(F (p))

]

= {0, p̄}
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Proof. Let q ∈ InWq(F ) be such that qF (p) ∈ In+1Wq(F (p)). Set
q =

∑r

i=1 φi[1, ai], φi an n-fold bilinear Pfister form over F , 1 ≤ i ≤ r.
If r = 1, i.e. q = φ[1, a], then the above assumption implies that φ[1, a]
is hyperbolic over F (p) (see [ Ba 2]) and then by the norm theorem ( see
[ Ba 3]) we conclude φ[1, a] ' p over F , i.e. q̄ = p̄. Now assume r > 1,
and we will prove the assertion by induction on r. Thus we assume the
assertion true for any field and any form of length less than r. Thus without
restriction φr[1, ar] is anisotropic. Set ψ = φr, and let F (ψ) be its function
field. Then qF (ψ) =

∑r−1
1 φi[1, ai] ∈ InWq(F (ψ)) and over F (ψ)(p) we get

qF (ψ)(p) ∈ In+1Wq(F (ψ)(p)).
Therefore by induction we obtain

qF (ψ) ≡ εpF (ψ) mod In+1Wq(F (ψ))

with ε = 0 or 1. Thus

(q ⊥ εp)F (ψ) ∈ In+1Wq(F (ψ)).

From (5.1) we conclude q ⊥ εp ≡ ψ[1, c] mod In+1Wq(F ) with some
c ∈ F . Since qF (p) ∈ In+1Wq(F (p)), it follows ψ[1, c]F (p) ∈ In+1Wq(F (p)), i.e.
ψ[1, c] is hyperbolic over F (p), and hence by the norm theorem (see loc. cit.
) ψ[1, c] ≡ ηp mod In+1Wq(F ) with η = 0 or 1. Therefore q ≡ (ε+ η)p mod
In+1Wq(F ). This conclude the proof. ¤

Using the isomorphism (5.2) we can restate the above result as follows.
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(5.5) Theorem. Let p =¿ b1, . . . , bn; b]] be an anisotropic quadratic n-fold
Pfister form over F . Then

Hn+1(F (p)/F ) =

{

0, b
db1
b1
∧ · · · ∧ dbn

bn

}

.

(5.6)Remark. The analogue of (5.3) for bilinear forms is the following result

(5.7) Proposition. Let φ =¿ b1, . . . , bn À be an anisotropic bilinear n-fold
Pfister form. Then for m ≥ n

ker

[

ImF
Im+1F

→
ImF (φ)

Im+1
F (φ)

]

=
{

∑

Im−n¿ x1, . . . , xn À|x1, . . . , xn ∈ F 2(b1, . . . , bn)
}

.

In the case m = n, we have

ker

[

InF
In+1F

→
InF (φ)

In+1
F (φ)

]

=
{

¿ x1, . . . , xn À|x1, . . . , xn ∈ F 2(b1, . . . , bn)
}

.

We will show the special case m = n for simplicity.

If x1, . . . , xn ∈ F 2(b1, . . . , bn), then dxi ∈ Fdb1 ⊕ · · · ⊕ Fdbn and hence

dx1
x1
∧ · · · ∧ dxn

xn
= a

db1
b1
∧ · · · ∧ dbn

bn

with some a ∈ F 2(b1, . . . , bn). Since adb1
b1
∧ · · · ∧ dbn

bn
∈ ker(Ωn

F → Ωn
F (φ)), it

follows dx1

x1
∧ · · · ∧ dxn

xn
∈ ker[ν(n)F → ν(n)F (φ)]. Thus

¿ x1, . . . , xn À = α(
dx1
x1
∧ · · · ∧ dxn

xn
) ∈ ker

[

InF
In+1F

→
InF (φ)

In+1
F (φ)

]

.

Conversely take any ψ = α(w) ∈ ker

[

InF
In+1
F

→ In
F (φ)

In+1
F (φ)

]

, with w ∈ ker[ν(n)F →

ν(n)F (φ)], i.e. w = adb1
b1
∧ · · · ∧ dbn

bn
. Using Kato’s lemma (see (2.15)) one

64



immediately obtains w = dx1

x1
∧· · ·∧ dxn

xn
with x1, . . . , xn ∈ F 2(b1, . . . , bn) and

this implies ψ =¿ x1, . . . , xn À.

In particular, since this kernel is a group, we obtain

(5.8) Corollary. Given x1, . . . , xn, y1, . . . , yn ∈ F 2(b1, . . . , bn), then there
exist z1, . . . , zn ∈ F 2(b1, . . . , bn) with

¿ x1, . . . , xn À +¿ y1, . . . , yn À=¿ z1, . . . , zn À mod In+1F

This corollary says that the field F 2(b1, . . . , bn) is n-linked relative to F .
In particular if {b1, . . . , bN} is a 2-basis of the field F , i.e. F = F 2(b1, . . . , bN),

then IN+1F = 0 and it follows

INF = {¿ x1, . . . , xN À |xi ∈ F ∗} .
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6 Generic splitting of quadratic forms and

the degree conjecture

Since Knebusch’s seminal papers on generic splitting of quadratic forms over
fields of characteristic 6= 2 (see [ Kn 1], [ Kn 2]) appeared, few work has
been done on the subject (see [ Ar-Kn], [ F], ... ). In particular Knebusch’s
degree conjecture In = Jn, where Jn is the ideal of W (F ) of forms of degree
≥ n remains still open. In what follows we will briefly develop the analog
of Knebusch’s theory over fields of characteristic 2 and using the results of
section 5 we will show that in this case the corresponding degree conjecture
is true.

Our main reference will be Knebusch’s paper [ Kn] on reduction theory of
quadratic and bilinear forms, which holds true for fields of any characteristic,
as well as his generic splitting papers cited above. Many of the definitions
and results of Knebusch’s theory can be extended (using [ Ba 2], [ Ba 3])
mutatis mutandis to the case 2 = 0, so that we will often refer to the above
papers for proofs.

From now on all fields have characteristic 2. The most basic notion in
this theory is that of generic zero field of a quadratic form q over F . A field
extension L/F is a generic zero field of q if qL is isotropic and if E/F is any
extension with qE isotropic, then there exists a F -place λ : L→ E ∪∞ (see
[ La]). One easily checks that the function field F (q) of q is a generic field of
q. If q = 〈a1〉[1, b1] ⊥ · · · ⊥ 〈an〉[1, bn], then F (q) = F (x1, . . . , xn, y1, . . . , yn)
with the single relation

∑n

1 ai(x
2
i + xiyi + biy

2
i ) = 0. Also the field F (q)0 =

F (u1, . . . , un−1, v1, . . . , vn−1, z) with an(z
2 + z + bn) +

∑n−1
1 ai(u

2
i + uivi +

biv
2
i ) = 0 is a generic zero field of q. F (q)0 is purely transcendental over F

if and only if q is isotropic over F . Starting with a non singular quadratic
form q over F we can define a field tower F = F0 ⊂ F1 ⊂ · · · ⊂ Fh and
forms q = q0, q1, . . . , , qh defined over F0, F1, . . . , Fh respectively such that qr
is anisotropic over Fr, 0 ≤ r ≤ h−1, qh is hyperbolic over Fh, and qr−1⊗Fr '
qr ⊥ ir × [0, 0] with some integer ir, Fr being a generic zero field of qr−1 over
Fr−1 . The sequence (Fr, qr, ir, 0 ≤ r ≤ h) is called a generic splitting tower
of q. Recall that two field extensions L1/F, L2/F are called F -equivalent if
there exist F -places λ1 : L1 → L2 ∪ ∞, λ2 : L2 → L1 ∪ ∞. Then any field
L which is F -equivalent to Fh is called a generic splitting field of q and any
field F -equivalent to Fh−1 is called a leading field of q. A generic splitting
tower of q is essentially unique in the sense that if (Fr, qr, ir, 0 ≤ r ≤ h),
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(F ′s, q
′
s, i

′
s, 0 ≤ s ≤ h′) are two generic splitting towers of q, then h = h′ ,

ir = i′r, 0 ≤ r ≤ h, Fh is equivalent with F ′h. The number h = h(q) is
called the height of q. Obviously any form 〈a〉p, a ∈ F ∗ and p a Pfister form,
has height 1. Conversely if h(q) = 1, then qF (q) is hyperbolic and the norm
theorem proved in [ Ba 2] implies immediately that q ' 〈a〉p with a ∈ F ∗ and
p a Pfister form. In particular for any form q, the form qh−1 is similar to a n-
fold Pfister form over Fh−1. The degree n of this form is uniquely determined
and we will call it the degree of q and we denote it by deg(q). If q is hyperbolic
we set deg(q) = ∞. For any extension L/F we have deg(qL) ≥ deg(q) and
deg is a well defined function onWq(F ), deg : Wq(F )→ N ∪{∞}. We define
for any n ≥ 0

J(n) = {q̄ ∈ Wq(F )| deg(q) ≥ n}.(6.1)

One easily checks that J(0) = Wq(F ), J(1) = IWq(F ), J(2) = I2Wq(F )
(see [ Ba 1], [ A-Ba 1] ). First we show that J(n) is a W (F ) submodule of
Wq(F ) and that InWq(F ) ⊆ J(n). The key fact is the following result (com-
pare [ Kn 1]).

(6.2) Proposition. Let q = 〈a〉p ⊥ q′ be a quadratic form over F , where p
is an anisotropic Pfister form of degree n ≥ 1, a ∈ F ∗ and deg(q′) ≥ n + 1.
Let L be a leading field of q. Then

i) deg(q) = n

ii) pL is a leading form of q.

iii) If deg(q′) ≥ n + 2, then pL is anisotropic and qL is Witt-equivalent to
〈a〉pL with some a ∈ L∗.

Proof. We may assume that q′ is not hyperbolic. We will show that
deg(q) = n. Let (Li, q

′
i, 0 ≤ i ≤ e) be a generic splitting tower of q′.

Then pLe is anisotropic. Otherwise pLe is hyperbolic and we can choose
0 ≤ m ≤ e maximal with pLm anisotropic. Then p is hyperbolic over Lm(q

′
m)

and the norm theorem (see [ Ba 2]) together with the sub form theorem (see
[ Ba 3]) show that 〈a〉q′m is a sub form of pLm for some b ∈ L∗m. In particular
deg(q′) = deg(q′m) ≤ n which is a contradiction. Thus pLe is anisotropic,
and therefore 〈a〉pLe is the kernel form of qLe . This shows deg(q) ≤ n.
If deg(q) = m < n, let L be a leading field of q with ker(qL) = 〈c〉r,
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c ∈ L∗ and r a m-fold Pfister form over L. Thus q′L ∼ 〈c〉r ⊥ 〈a〉pL,
and since dim(〈c〉r ⊥ 〈a〉pL) = 2m + 2n < 2n+1, it follows q′L ∼ 0 because
deg(q′) ≥ n + 1. Thus 〈c〉r ∼ 〈a〉pL over L, and this implies pL hyperbolic
and hence r is hyperbolic, which is a contradiction. Thus deg(q) = n. The
rest of the proposition follows easily and we omit the proof. ¤

(6.3) Corollary. For any two forms q1, q2 over F

deg(q1 ⊥ q2) ≥ min{deg(q1), deg(q2)}

and if deg(q1) 6= deg(q2), the equality holds.

From these results we immediately obtain

(6.4) Theorem.

(i) J(n) is a W (F )-sub-module of Wq(F )

(ii) InWq(F ) ⊂ J(n)

(iii) ImJ(n) ⊂ J(m+ n).

Proof. (i) The above corollary shows that J(n) is subgroup of Wq(F ).
Since for any a ∈ F ∗, deg(〈a〉q) = deg(q), again the same corollary im-
plies deg(〈a1, . . . , am〉q) ≥ deg(q) for any a1, . . . , am ∈ F ∗, i.e. J(n) is a
W (F )-submodule of Wq(F ). This shows (i). Since InWq(F ) is additively
generated by the n-fold Pfister forms ¿ a1, . . . , an; a]] of degree n, (ii) fol-
lows from (i), (iii) is also an immediate corollary of (i). ¤

If F is a field of characteristic different from 2, then one of the major
conjectures of Knebusch’s generic splitting theory is the equality Jn = In in
W (F ). In [ A-Ba 2] Theorem 1, we have shown that the equality InWq(F ) =
J(n) for any field F is equivalent with the equality

ker[InWq(F )/I
n+1Wq(F )→ InWq(F (p))/I

n+1Wq(F (p))] = {0, p̄}

for any quadratic n-fold Pfister form p over F . Now if F is a field of char-
acteristic 2, theorem (5.4) asserts that this equality is true. Thus combining
these results we have the following.
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(6.5) Main theorem. Let F be a field of characteristic 2. Then for any
n ≥ 0

InWq(F ) = J(n).

(6.6) Remark. Of course (6.5) implies (6.4), but the above outlined proof
of (6.4) is much more elementary.

69



References

[ Ar-Kn] Arason,J., Knebusch, M.: Über die Grade quadratischer Formen.
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